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What if you happen to have a simulator, but the task is mis-specified, or not fixed, or yet unknown?
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Motivations

What if you happen to have a simulator, but the task is mis-specified, or not fixed, or yet unknown?
In RL, unsupervised pre-training [1, 2] is a solution:

Learn something useful no matter the task, to leverage later as soon as a task is provided.

[1] Laskin et al., Unsupervised reinforcement learning benchmark, NeurIPS 2021
[2] Zisselmann et al. Explore to Generalize in Zero-Shot RL. NeurIPS 2023
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Unsupervised Pre-Training: The Setting & Problem Formulation

CMP M » MDP M | REWARD R
UNSUPERVISED MeMm | suPERvISED | 7 € argmax V"
PRE-TRAINING | pre-trained model FINE-TUNING | optimal policy

[1] Laskin et al., Unsupervised reinforcement learning benchmark, NeurIPS 2021
[2] Zisselmann et al. Explore to Generalize in Zero-Shot RL. NeurIPS 2023
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Unsupervised Pre-Training: The Setting & Problem Formulation

UNSUPERVISED
PRE-TRAINING

MeIM

pre-trained model

Unsupervised Pre-Training Objective

maxpreom Fpre—train(Ma M)

[1] Laskin et al., Unsupervised reinforcement learning benchmark, NeurIPS 2021
[2] Zisselmann et al. Explore to Generalize in Zero-Shot RL. NeurIPS 2023
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Unsupervised Pre-Training: The Setting & Problem Formulation

UNSUPERVISED
PRE-TRAINING

MeIM

pre-trained model

Unsupervised Pre-Training Objective

maxpreom Fpre—train(Ma M)

Which model should we pre-train?

- Transition Models
- Representations

- Data-Sets

- Policy Spaces

- Policies

[1] Laskin et al., Unsupervised reinforcement learning benchmark, NeurIPS 2021
[2] Zisselmann et al. Explore to Generalize in Zero-Shot RL. NeurIPS 2023
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Unsupervised Pre-Training: The Setting & Problem Formulation

Unsupervised Pre-Training Objective

maxpysreomn fpre—train(Ma M)
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Unsupervised Pre-Training: The Setting & Problem Formulation

Unsupervised Pre-Training Objective

maxpysreomn ‘Fpre—train(Ma M)

State Entropy Maximization
We pre-train Fpre-train = H (d™)

policies. H(d™) = — E log d™(s)

d™(s) = 7 Xy Prise = s|m, p)
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Unsupervised Pre-Training: The Setting & Problem Formulation

Unsupervised Pre-Training Objective

maxpysreomn ‘Fpre—train(Ma M)

Policy pre-training in

. i MDPs allows for zero-

We pre-train Fpre-train = H(d") shot generalization [2].
policies. H(d") := = E logd"(s) task-misspecification

’ robustness [3]

State Entropy Maximization

d™(s) = % Zte[T] Pr(sy = s|m, 1)

[2] Zisselmann et al. Explore to Generalize in Zero-Shot RL. NeurIPS 2023
[3] Ashlag et al. State Entropy Regularization for Robust Reinforcement Learning, under-review 2025
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One Fun Fact about State Entropy Maximization

Riccardo Zamboni

(Standard) RL Objective:

maxgreag(d™,T)

VS

Convex RL Objective:
maxXgreag F(d™)
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One Fun Fact about State Entropy Maximization

(Standard) RL Objective: .- Convex RL Objective:
maxgreag(d™,T) maxgreas F(d")

Apprenticeship Learning, Inverse RL, Constrained RL, Imitation Learning, Diverse Skill
Discovery are all instances of convex RL [4].
(I claim RLHF as well, prove me wrong)

[4] Mutti et al., Convex Reinforcement Learning in Finite Trials. JMLR 2023
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One Fun Fact about State Entropy Maximization

(Standard) RL Objective: .- Convex RL Objective:
maxgreag(d™,T) maxgreas F(d")

Apprenticeship Learning, Inverse RL, Constrained RL, Imitation Learning, Diverse Skill
Discovery are all instances of convex RL [4].

But Convex RL is hard: non-Markovian rewards and no Bellman Operators, number of
trials matters.

[4] Mutti et al., Convex Reinforcement Learning in Finite Trials. JMLR 2023
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One Fun Fact about State Entropy Maximization

One Hardness of Convex RL resides in the number of trials [4]:

e Bilelle e DT e VS Infinite-Trials State Distribution:

dx(s) = 21 Y seie.r 1selt] = 5) d™(s) = Eax~py [di (5)]

}—(dW) 7’é EdKfvp}} []'—(dK)]

[4] Mutti et al., Convex Reinforcement Learning in Finite Trials. JMLR 2023
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Pre-Training with Partial Observations

M= (S.0,0, AP, 1, T)

St St+1

Environment
® [Tl

(/ \s P(|si,ar) —

— — —O(s) = — —\— -
\

3
Agent

[5] Astrém, Optimal control of Markov processes with incomplete state information, 1965
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State Space
Observation Space

: S — A(O) Observation Matrix
Action Space

: T — A(A) Policy

: S x A— A(S) Transition Matrix
Initial State Distribution
Episode Horizon (t € [T)

NHET FY RLOQn

where Z € {0, 0T}



Pre-Training with Partial Observations

In Partially Observable Environments:

- Observations jeopardize pre-training [A] and agents need to regularize with respect to the
observation quality to counteract the mismatch.

- When learning via a latent model [B], learning should explicitly avoid hallucinatory effects of the
latent representation.

[A] Zamboni et al. The Limits of Pure Exploration in POMDPs: When the Observation Entropy is Enough. RLC 2024
[B] Zamboni et al. How to explore with belief: state entropy maximization in POMDPs . ICML 2024
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Pre-Training with Partial Observations

Maximum State Entropy
(MSE)

maxer H(d%)

VS

Maximum Observation Entropy
(MOE)

max e H (df)

[A] Zamboni et al. The Limits of Pure Exploration in POMDPs: When the Observation Entropy is Enough. RLC 2024
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Pre-Training with Partial Observations

Maximum State Entropy Maximum Observation Entropy
(MSE) VS (MOE)
maxer H(d%) maxrer H (dp)

log ( 5ty ) < H(d5) — H(dD) < 10(0ax(0))

Omax(A) == [|4]]2 = V/Amax(A*A4) Maximum Singular Value

A;’j_l = f Vi, Hadamard Inverse
ij

[A] Zamboni et al. The Limits of Pure Exploration in POMDPs: When the Observation Entropy is Enough. RLC 2024
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Pre-Training with Partial Observations

log ( 5ty ) < H(d5) — H(dD) < 108(01max(0))

Pro: Bidirectional Bound.
Cons:

e Opaque dependency on Q.

e Independent of the policy.

[A] Zamboni et al. The Limits of Pure Exploration in POMDPs: When the Observation Entropy is Enough. RLC 2024
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Pre-Training with Partial Observations

H(d3) > H(d) — H(S|O,) + 10g(0max(0))

PMD:E[ pgzg[b: H(S|O,m) := Eonaz, [H(O(0|"))]
~—>  m_ls Pro:

e Implicit Dependency on the policy.
e Accessible in POMDPs.

Cons: Lower-Bound only.

H(dp) ™

r

II

[A] Zamboni et al. The Limits of Pure Exploration in POMDPs: When the Observation Entropy is Enough. RLC 2024
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Pre-Training with Partial Observations

Small-noise Observations Large-noise Observations

Large-noise Observations
with Structure
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[A] Zamboni et al. The Limits of Pure Exploration in POMDPs: When the Observation Entropy is Enough. RLC 2024
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Pre-Training with Partial Observations

St St+1

Environment @ @ Belie f -
N

[6] Avalos et al., The Wasserstein Believer. ICLR 2024
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S State Space

O  Observation Space

0:8 - A(O) Observation Matrix
A Action Space

m:Z — A(A) Policy

P:SxA— A(S) Transition Matrix
beBCA(S) Belief Model

B:X xAxB— B Model Update
_ __ 0(o]") 3./ P(|s",a)b(s")

2251 O(ols") 32,0 P(s"[s,a)b(s’)
1 Initial State Distribution

T Episode Horizon (t € [T1])

where 7 € {O0,S,B, 0T, 8T, BT}

24



Pre-Training with Partial Observations

Maximum Believed Entropy (MBE)

H(dT) = E H(ds)

E
brplde~b

[B] Zamboni et al. How to explore with belief: state entropy maximization in POMDPs . ICML 2024
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Pre-Training with Partial Observations

Maximum Believed Entropy (MBE)

H(dg) = E_E H(ds)

Pro:

e Learned Model .
Learning over the latent model can be

e Non-Markovianity exploited to build degenerate (i.e. highly
entropic) representations.

Cons: Hallucinations

[B] Zamboni et al. How to explore with belief: state entropy maximization in POMDPs . ICML 2024
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Pre-Training with Partial Observations

H(dT) :|= LB B H(s)
Z| H(b) = > e H(by)
Hydg) = E [, 5, H(dg) - SH(b)

[B] Zamboni et al. How to explore with belief: state entropy maximization in POMDPs . ICML 2024

Riccardo Zamboni

Research Talk

27



Pre-Training with Partial Observations

[B] Zamboni et al. How to explore with belief: state entropy maximization in POMDPs . ICML 2024

Riccardo Zamboni
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H{(dg) ¢|= oy B T ()
Z| H(b) = Zte[T] H(by) J[[Hjb
1
Hp(dg) = B [,E H(ds)— BH(b)]
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Pre-Training with Partial Observations

X(-|s) € N(s,02)

[B] Zamboni et al. How to explore with belief: state entropy maximization in POMDPs . ICML 2024

Riccardo Zamboni
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Pre-Training with Multiple Agents

Parallel MDPs [7] Markov Games [8]

St Ste1 \ \Tg A
W88 -8 -
\ L é\avt ®g \

[7] Sucar. Parallel Markov Decision Processes. Advances in Probabilistic Graphical Models. 2007
[8] Littman. Markov games as a framework for multi-agent reinforcement learning. ICML 1994
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Pre-Training with Multiple Agents

In Multi-Agent Environments:
- When learning in parallel environments [C], diversity collapse should be explicitly avoided to have
any advantages.

- When learning in games [D] over finite-trials, curse of dimensionality hinders the scalability of pre-
training.

The answer to both these challenges is the use of hybrid representation.

[C] De Paola and Zamboni. Enhancing Diversity in Parallel Agents: A Maximum State Entropy Exploration Story. ICML 2025
[D] Zamboni et al. Towards Unsupervised Multi-Agent Reinforcement Learning. EXAIT @ ICML 2025 & Under-review
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Pre-Training with Multiple Agents
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[C] De Paola and Zamboni. Enhancing Diversity in Parallel Agents: A Maximum State Entropy Exploration Story. ICML 2025
[D] Zamboni et al. Towards Unsupervised Multi-Agent Reinforcement Learning. EXAIT @ ICML 2025 & Under-review
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Pre-Training with Multiple Agents

Marginal Distribution:
d7 (85) = 7 doierr) Prisei = silm, 1)

Joint Distribution:

Daesy) T T Tieu Prise=sim )

BT
L
5
<—|/
|
|
I
I

[C] De Paola and Zamboni. Enhancing Diversity in Parallel Agents: A Maximum State Entropy Exploration Story. ICML 2025
[D] Zamboni et al. Towards Unsupervised Multi-Agent Reinforcement Learning. EXAIT @ ICML 2025 & Under-review
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Pre-Training with Multiple Agents

Marginal Distribution:
d7 (85) = 7 doierr) Prisei = silm, 1)

O
()]

L]
‘o
<—|/
|

Joint Distribution:
d™(s) = T > yery Prise = slm, p)

Mixture Distribution:

d}(g) a ﬁ Zie[N] df(g)

[C] De Paola and Zamboni. Enhancing Diversity in Parallel Agents: A Maximum State Entropy Exploration Story. ICML 2025
[D] Zamboni et al. Towards Unsupervised Multi-Agent Reinforcement Learning. EXAIT @ ICML 2025 & Under-review
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Pre-Training with Multiple Agents

In parallel environments, the use of mixture distributions allows for:

- Provably efficient learning in infinite trials, via a parallel formulation of Frank-Wolfe [9]

[0] Hazan et al. Provably efficient Maximum Entropy Exploration. PMLR 2019
[C] De Paola and Zamboni. Enhancing Diversity in Parallel Agents: A Maximum State Entropy Exploration Story. ICML 2025
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Pre-Training with Multiple Agents

In parallel environments, the use of mixture distributions allows for:

- Provably efficient learning in infinite trials, via a parallel formulation of Frank-Wolfe [9]

- In finite trials, optimizing the mixture entropy allows for state distribution diversity.

H(d™) = o Seppy HD) + ot S e KL(AF )

[0] Hazan et al. Provably efficient Maximum Entropy Exploration. PMLR 2019
[C] De Paola and Zamboni. Enhancing Diversity in Parallel Agents: A Maximum State Entropy Exploration Story. ICML 2025
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Pre-Training with Multiple Agents

Unsupervised parallel pre-training leads to better data-collection and higher offline robustness.
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Success Rate of Offline RL for different tasks, with data collected with parallel or non-parallel pre-
trained policies or random policies

[C] De Paola and Zamboni. Enhancing Diversity in Parallel Agents: A Maximum State Entropy Exploration Story. ICML 2025
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Pre-Training with Multiple Agents

In games, the use of mixture distributions allows for:

- Efficient Lower bounds to the ideal objective

H(d™)

V]

< ot Yiep H(dD) < H(T) < H(d7) Hlog(IN) < H(d™) +log(IN)

[D] Zamboni et al. Towards Unsupervised Multi-Agent Reinforcement Learning. EXAIT @ ICML 2025 & Under-review
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Pre-Training with Multiple Agents

In games, the use of mixture distributions allows for:

- Efficient Lower bounds to the ideal objective

TN < o Sieng H(dF) < H(d™) < H(dE)+log(IN]) < H(d™)+log(IN])

- Faster concentration of entropies

- S|log(2T/6 S 5 2|8 log(2T /6
|H(d™) — Eaympy, H(di )| < LT/ 2E08CT0) g |H(d ) = Egempr Hdr)| < LT 2151 108(27/0) 'ngK £2)

[D] Zamboni et al. Towards Unsupervised Multi-Agent Reinforcement Learning. EXAIT @ ICML 2025 & Under-review
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Pre-Training with Multiple Agents

Unsupervised multi-agent pre-training leads to faster learning and zero-shot performances when done

right.
8000 S E—
{ o c T 6
5 5 £
£ 20000 = 8000 |5
[+ [ra g4
[ 9 4000 v
(o) o)) o
g 10000 g pre g )
> > >
< ; £ I
oL’ o] = I I
0.00 025 050 075 1.00 125 1.50 0 1 2 3 4 5, 0 Zero.Shot Post-Learning
Samples x10 Samples x10

Effect over training dynamics (left) and zero-shot performances (right) of unsupervised policy pre-
training, with different objectives, , joint, disjoint pre-training or random initialization.

[D] Zamboni et al. Towards Unsupervised Multi-Agent Reinforcement Learning. EXAIT @ ICML 2025 & Under-review
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Future research directions

* Scaling, some Scaling, and then Scaling
* Unsupervised Policy Space Compression

* Dual optimization for general convex MDPs and MGs

Riccardo Zamboni Research Talk 41
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More References: Unsupervised Pre-Training

Approach Pre-training References

Low-rank or Block MDPs Representations [Misra et al., 2020], [Agarwal et al., 2020], [Modi et al., 2024]

Contrastive Loss Representations [Laskin et al., 2020, Luu et al., 2022],

[Yu et al., 2025]

Reconstruction Loss Representations [Burda et al., 2019], [Anand et al., 2019], [Seo et al., 2022],
[Meng et al., 2023]

Supervised Leamning Loss Representations [Yuan et al., 2022, Yoon et al., 2023]

Reward-Free RL Transition Model [Jin et al., 2020], [Kaufmann et al., 2021], [Ménard et al., 2021],
[Zhang et al., 2020d]

Task-Agnostic RL Transition Model [Zhang et al., 2020c]

Forward-Backward & Behavioral Foundation Models  Transition Model

[Touati and Ollivier, 2021, Tirinzoni et al., 2025, Sikchi et al., 2025]

World Models Transition Model [Ha and Schmidhuber, 2018], [Hafner et al., 2019], [Matsuo et al., 2022]
[Hafner et al., 2023], [Pearce et al., 2024]

Curiosity Transition Model [Schmidhuber, 1991], [Pathak et al., 2017], [Burda et al., 2018]

Reward-Free Data Collection Dataset [Wang et al., 2020, Zanette et al., 2020]

ExORL Dataset [Yarats et al., 2022]

Explore20ffline Dataset [Lambert et al., 2022]

Count-Based Dataset [Bellemare et al., 2016]

Policy Space Compression Policy Space [Mutti et al., 2022c]

Policy Collection-Elimination Policy Space [Ye et al., 2023]

Mutual Information for Skill Discovery Policy Space [Gregor et al., 2017], [Eysenbach et al., 2018], [Hansen et al., 2019],

[Sharma et al., 2019], [Campos et al., 2020], [Liu and Abbeel, 2021a],

[He et al., 2022], [Zahavy et al., 2022]

Entropy Maximization Policy see Table 3.2

High-Level Hierarchical Policies Policy [Pertsch et al., 2021, Baker et al., 2022, Ramrakhya et al., 2023, Yuan et al., 2024]

Fine-Tuning Mechanisms Policy [Campos et al., 2021], [Pislar et al., 2021], [Xie et al., 2021],

[Uchendu et al., 2023]
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More References: State Entropy Maximization

Riccardo Zamboni

Algorithm Distribution Space Reference
MaxEnt Discounted State [Hazan et al., 2019]
FW-AME Stationary State-Action [Tarbouriech and Lazaric, 2019]
SMM Marginal State [Lee et al., 2020]
IDE®AL Stationary State [Mutti and Restelli, 2020]
MEPOL Marginal State [Mutti et al., 2021]
MaxRényi Discounted State-Action [Zhang et al., 2021a]
GEM Marginal State [Guo et al., 2021]
APT Marginal State [Liu and Abbeel, 2021b]
RE3 Marginal State [Seo et al., 2021]
Proto-RL Marginal State [Yarats et al., 2021]
MetaEnt Discounted State [Zahavy et al., 2021]
RL-Explore-Ent  Discounted State Trajectories [Zahavy et al., 2021]
KME Discounted State [Nedergaard and Cook, 2022]
FSC Stationary ~ Observation Trajectories [Savas et al., 2022]
CEM Marginal State [Yang and Spaan, 2023]
n-Learning Discounted State [Jain et al., 2023]
ExpGen Marginal State [Zisselman et al., 2023]
MOE Marginal Observation [Zamboni et al., 2024b]
MBE Marginal Latent State [Zamboni et al., 2024a]
TRPE Marginal State [Zamboni et al., 2025]
PGL Marginal State [Gemp et al., 2025]
PGPSE Marginal State [De Paola et al., 2025]
Research Talk
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One Fun Fact: Convex Objectives

UTILITY F APPLICATION INFINITE = FINITE

r-d reRS,de As RL v
d—dgl|?

I E“” d,dg € As IMITATION LEARNING X
KL(d||dE)

—d - log (d) deAg PURE EXPLORATION X

CVaRalr - d] reR% deAs RISK-AVERSE RL X

r-d — Var[r - d]
r-d,s.T. \-d<c¢ r,AXeR% ceR,de As LINEARLY CONSTRAINED RL v
—E,KL(d,||Exdr) z€R%d,,d, € As  DIVERSE SKILL DISCOVERY X

[4] Mutti et al., Convex Reinforcement Learning in Finite Trials. JMLR 2023
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Pre-Training with Partial Observations [A]

Algorithm 1 PG for MOE (Reg-MOE)

: Input: learning rate «, number of iterations K, batch size N
: Initialize the policy parameters 6,
:fork=1,...,K do
Sample N trajectories {(x;,a;)}ic;n) with the policy g,
Compute {H(X|[x;)}ie(n) and {Vglogmo(xi,a;) = 3-,cir Vo log mo(aift][xi[t]) bien
Update the policy parameters in the gradient direction
Ori1 < Ok + oy X Vologmo(xi,a:) (H(X[%:)—B Y, » px (z|x:) H(O(z]"))
end for
: Output: the final policy my,

®

[A] Zamboni et al. The Limits of Pure Exploration in POMDPs: When the Observation Entropy is Enough. RLC 2024
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Pre-Training with Partial Observations [B]

Algorithm 1 Reg-PG for MaxEnt POMDPs

1: Input: learning rate «, initial parameters 6, number of episodes K, batch size IV, information set Z, proxy class

j €8, 0,8}, regularization parameter p

2: fork =1to K do

3:  Sample N trajectories {7}* ~ p”% },c[n]
4:  Compute the feedbacks {H(d(7]")) }ne[n
5
6

Compute {log m(77*) }ne[n)

Perform a gradient step 611 < O + & Eﬁ logm(])[H (d(7]'))—p >, H(0})]
7: end for
8: Output: the last-iterate policy Fg{

[B] Zamboni et al. How to explore with belief: state entropy maximization in POMDPs . ICML 2024
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Pre-Training with Multiple Agents [C]

Algorithm 2 Parallel Frank-Wolfe.

1: Input: Step size 1, number of iterations 7', number of agents IV, planning oracle tolerance £; > 0, distribution
estimation oracle tolerance €y > 0.

: Set {C§ = {m{}}ien where m§ is an arbitrary policy, af = 1.

:fort=0,...,7T—1do

Each agent call the state distribution oracle on mmix: = w4 >;(c, Cf):

W

d., = DENSITYEST (Tmix ¢, €0)

T mi;

5:  Define the reward function r} for each agent i as

. dH(X
ri(s) = VH(d,, ) = oK)
X=di

Tmix, t

6:  Each agent computes the (approximately) optimal policy on r;:
T, = APPROXPLAN (r{,€1) .
7:  Each agent updates
C'7?+1 = (778’ s ;7r;tia 7T;‘,i+1),
apyr = ((L=mn)ag,n).

end for
Tmix, T = % Z,(a’lrycé")

b

[C] De Paola and Zamboni. Enhancing Diversity in Parallel Agents: A Maximum State Entropy Exploration Story. ICML 2025
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Pre-Training with Multiple Agents [C]

Algorithm 1: Policy Gradient for Parallel States
Entropy maximization (PGPSE)

1: Input: Episodes N, Trajectories K, Batch Size
B, Learning Rate o, Parameters 6 = (6°) ;¢

2: foree {1,...,N} do

3: foritr € {1,...,B}do

4 forke{1,...,K} do

5 T ~ mp {Sample parallel trajectories}

6: log mp, « 1y Vo logmg(as | s1)

7 dp(s) ¢ 12 ST 150,05 = 9)

8 VoJ(8) +=logme, - H(dp)

9 end for

10:  end for

11:  VeJ(6) « £VeT(6)

12: 0+ 0+ aVeJ(0)

13: end for

14: Output: Policies g = (7}, ) ic[m)

[C] De Paola and Zamboni. Enhancing Diversity in Parallel Agents: A Maximum State Entropy Exploration Story. ICML 2025

Riccardo Zamboni Research Talk 50



Pre-Training with Multiple Agents [C]
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Pre-Training with Multiple Agents [D]

1: Input: exploration horizon 7', trajectories N,
trust-region threshold ¢, learning rate n

2: Initialize @ = (6") ;e[

3: for epoch =1, 2,... until convergence do

4:  Collect N trajectories with g = (mh; ) ie[]

5. foragenti = 1,2,... concurrently do

6 Set datasets D* = {(s,, af,), (' }nen]

7: h=0,0; =6

8

9

while DKL (Wg, Wgé) < d do
h
Compute £*(6¢ /67) viaIS.

10: he1 =05 + nvgzcz(eg/og)
11: h—h+1

12: end while

13: 0 — 0;;

14:  end for

15: end for

16: Output: joint policy mg = (7). )ic[n]
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Pre-Training with Multiple Agents [D]
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