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Task A Task B Task ?
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What if you happen to have a simulator, but the task is mis-specified, or not fixed, or yet unknown? 
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What if you happen to have a simulator, but the task is mis-specified, or not fixed, or yet unknown? 

   In RL, unsupervised pre-training [1, 2] is a solution:

Learn something useful no matter the task, to leverage later as soon as a task is provided.

[1] Laskin et al., Unsupervised reinforcement learning benchmark, NeurIPS 2021
[2] Zisselmann et al. Explore to Generalize in Zero-Shot RL. NeurIPS 2023
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[1] Laskin et al., Unsupervised reinforcement learning benchmark, NeurIPS 2021 
[2] Zisselmann et al. Explore to Generalize in Zero-Shot RL. NeurIPS 2023
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[1] Laskin et al., Unsupervised reinforcement learning benchmark, NeurIPS 2021 
[2] Zisselmann et al. Explore to Generalize in Zero-Shot RL. NeurIPS 2023
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[1] Laskin et al., Unsupervised reinforcement learning benchmark, NeurIPS 2021 
[2] Zisselmann et al. Explore to Generalize in Zero-Shot RL. NeurIPS 2023

Which model should we pre-train?

- Transition Models
- Representations
- Data-Sets
- Policy Spaces
- Policies 
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We pre-train 
policies.
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We pre-train 
policies.

  

Policy pre-training in 
MDPs allows for  zero-
shot generalization [2]. 
task-misspecification 
robustness [3]
  
 

[2] Zisselmann et al. Explore to Generalize in Zero-Shot RL. NeurIPS 2023
[3] Ashlag et al. State Entropy Regularization for Robust Reinforcement Learning, under-review 2025 
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(Standard) RL Objective: Convex RL Objective:
VS
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[4] Mutti et al., Convex Reinforcement Learning in Finite Trials. JMLR 2023

Apprenticeship Learning, Inverse RL, Constrained RL, Imitation Learning, Diverse Skill 
Discovery are all instances of convex RL [4]. 

(I claim RLHF as well, prove me wrong)

(Standard) RL Objective: Convex RL Objective:
VS
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[4] Mutti et al., Convex Reinforcement Learning in Finite Trials. JMLR 2023

VS

Apprenticeship Learning, Inverse RL, Constrained RL, Imitation Learning, Diverse Skill 
Discovery are all instances of convex RL [4].

But Convex RL is hard: non-Markovian rewards and no Bellman Operators, number of 
trials matters.

(Standard) RL Objective: Convex RL Objective:
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[4] Mutti et al., Convex Reinforcement Learning in Finite Trials. JMLR 2023

One Hardness of Convex RL resides in the number of trials [4]:

Finite-Trials State Distribution: Infinite-Trials State Distribution:VS
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[5] Åström, Optimal control of Markov processes with incomplete state information, 1965 
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[A] Zamboni et al. The Limits of Pure Exploration in POMDPs: When the Observation Entropy is Enough. RLC 2024
[B] Zamboni et al. How to explore with belief: state entropy maximization in POMDPs . ICML 2024

In Partially Observable Environments:

- Observations jeopardize pre-training [A] and agents need to regularize with respect to the 
observation quality to counteract the mismatch.

- When learning via a latent model [B], learning should explicitly avoid hallucinatory effects of the 
latent representation.
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[A] Zamboni et al. The Limits of Pure Exploration in POMDPs: When the Observation Entropy is Enough. RLC 2024

VS
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[A] Zamboni et al. The Limits of Pure Exploration in POMDPs: When the Observation Entropy is Enough. RLC 2024

VS
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[A] Zamboni et al. The Limits of Pure Exploration in POMDPs: When the Observation Entropy is Enough. RLC 2024

VS
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[A] Zamboni et al. The Limits of Pure Exploration in POMDPs: When the Observation Entropy is Enough. RLC 2024
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[A] Zamboni et al. The Limits of Pure Exploration in POMDPs: When the Observation Entropy is Enough. RLC 2024
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[6] Avalos et al., The Wasserstein Believer. ICLR 2024
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[B] Zamboni et al. How to explore with belief: state entropy maximization in POMDPs . ICML 2024
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[B] Zamboni et al. How to explore with belief: state entropy maximization in POMDPs . ICML 2024

Learning over the latent model can be 
exploited to build degenerate (i.e. highly 

entropic) representations.
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[B] Zamboni et al. How to explore with belief: state entropy maximization in POMDPs . ICML 2024
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[B] Zamboni et al. How to explore with belief: state entropy maximization in POMDPs . ICML 2024
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[B] Zamboni et al. How to explore with belief: state entropy maximization in POMDPs . ICML 2024
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[7] Sucar. Parallel Markov Decision Processes. Advances in Probabilistic Graphical Models. 2007
[8] Littman. Markov games as a framework for multi-agent reinforcement learning. ICML 1994

Parallel MDPs [7] Markov Games [8]
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[C] De Paola and Zamboni. Enhancing Diversity in Parallel Agents: A Maximum State Entropy Exploration Story. ICML 2025
[D] Zamboni et al. Towards Unsupervised Multi-Agent Reinforcement Learning. EXAIT @ ICML 2025 & Under-review

In Multi-Agent Environments:
- When learning in parallel environments [C], diversity collapse should be explicitly avoided to have 

any advantages.

- When learning in games [D] over finite-trials, curse of dimensionality hinders the scalability of pre-
training.

The answer to both these challenges is the use of hybrid representation.
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[C] De Paola and Zamboni. Enhancing Diversity in Parallel Agents: A Maximum State Entropy Exploration Story. ICML 2025
[D] Zamboni et al. Towards Unsupervised Multi-Agent Reinforcement Learning. EXAIT @ ICML 2025 & Under-review
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[C] De Paola and Zamboni. Enhancing Diversity in Parallel Agents: A Maximum State Entropy Exploration Story. ICML 2025
[D] Zamboni et al. Towards Unsupervised Multi-Agent Reinforcement Learning. EXAIT @ ICML 2025 & Under-review

Joint Distribution:

Marginal Distribution:
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[C] De Paola and Zamboni. Enhancing Diversity in Parallel Agents: A Maximum State Entropy Exploration Story. ICML 2025
[D] Zamboni et al. Towards Unsupervised Multi-Agent Reinforcement Learning. EXAIT @ ICML 2025 & Under-review

Joint Distribution:

Marginal Distribution:

Mixture Distribution:
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[9] Hazan et al. Provably efficient Maximum Entropy Exploration. PMLR 2019
[C] De Paola and Zamboni. Enhancing Diversity in Parallel Agents: A Maximum State Entropy Exploration Story. ICML 2025

In parallel environments, the use of mixture distributions allows for:

-   Provably efficient learning in infinite trials, via a parallel formulation of Frank-Wolfe [9]
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[9] Hazan et al. Provably efficient Maximum Entropy Exploration. PMLR 2019
[C] De Paola and Zamboni. Enhancing Diversity in Parallel Agents: A Maximum State Entropy Exploration Story. ICML 2025

In parallel environments, the use of mixture distributions allows for:

-   Provably efficient learning in infinite trials, via a parallel formulation of Frank-Wolfe [9]

- In finite trials, optimizing the mixture entropy allows for state distribution diversity.
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Unsupervised parallel pre-training leads to better data-collection and higher offline robustness.

[C] De Paola and Zamboni. Enhancing Diversity in Parallel Agents: A Maximum State Entropy Exploration Story. ICML 2025

Success Rate of Offline RL for different tasks, with data collected with parallel or non-parallel pre-
trained policies or random policies
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[D] Zamboni et al. Towards Unsupervised Multi-Agent Reinforcement Learning. EXAIT @ ICML 2025 & Under-review

In games, the use of mixture distributions allows for:

- Efficient Lower bounds to the ideal objective
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[D] Zamboni et al. Towards Unsupervised Multi-Agent Reinforcement Learning. EXAIT @ ICML 2025 & Under-review

In games, the use of mixture distributions allows for:

- Efficient Lower bounds to the ideal objective

- Faster concentration of entropies

VS
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Unsupervised multi-agent pre-training leads to faster learning and zero-shot performances when done 
right.

[D] Zamboni et al. Towards Unsupervised Multi-Agent Reinforcement Learning. EXAIT @ ICML 2025 & Under-review

Effect over training dynamics (left) and zero-shot performances (right) of unsupervised policy pre-
training, with different objectives, mixture, joint, disjoint pre-training or random initialization.
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• Scaling, some Scaling, and then Scaling

• Unsupervised Policy Space Compression

• Dual optimization for general convex MDPs and MGs
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[4] Mutti et al., Convex Reinforcement Learning in Finite Trials. JMLR 2023
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[A] Zamboni et al. The Limits of Pure Exploration in POMDPs: When the Observation Entropy is Enough. RLC 2024
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[B] Zamboni et al. How to explore with belief: state entropy maximization in POMDPs . ICML 2024



Pre-Training with Multiple Agents [C]

Riccardo Zamboni    Research Talk 49

[C] De Paola and Zamboni. Enhancing Diversity in Parallel Agents: A Maximum State Entropy Exploration Story. ICML 2025
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[C] De Paola and Zamboni. Enhancing Diversity in Parallel Agents: A Maximum State Entropy Exploration Story. ICML 2025
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[C] De Paola and Zamboni. Enhancing Diversity in Parallel Agents: A Maximum State Entropy Exploration Story. ICML 2025
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[D] Zamboni et al. Towards Unsupervised Multi-Agent Reinforcement Learning. EXAIT @ ICML 2025 & Under-review
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[D] Zamboni et al. Towards Unsupervised Multi-Agent Reinforcement Learning. EXAIT @ ICML 2025 & Under-review


