

Motivations

Motivations

What if you happen to have a simulator, but the task is mis-specified, or not fixed, or yet unknown?

In RL, **unsupervised pre-training** [1, 2] is a solution:

Learn something useful no matter the task, to leverage later as soon as a task is provided.

- [1] Laskin et al., Unsupervised reinforcement learning benchmark, NeurIPS 2021
- [2] Zisselmann et al. Explore to Generalize in Zero-Shot RL. NeurIPS 2023

[2] Zisselmann et al. Explore to Generalize in Zero-Shot RL. NeurIPS 2023

- [1] Laskin et al., Unsupervised reinforcement learning benchmark, NeurIPS 2021
- [2] Zisselmann et al. Explore to Generalize in Zero-Shot RL. NeurIPS 2023

Unsupervised Pre-Training Objective

 $\max_{M \in \mathfrak{M}} \mathcal{F}_{\text{pre-train}}(M, \mathcal{M})$

Which model should we pre-train?

- Transition Models
- Representations
- Data-Sets
- Policy Spaces
- Policies

[1] Laskin et al., Unsupervised reinforcement learning benchmark, NeurIPS 2021

[2] Zisselmann et al. Explore to Generalize in Zero-Shot RL. NeurIPS 2023

Unsupervised Pre-Training Objective

 $\max_{M \in \mathfrak{M}} \mathcal{F}_{\text{pre-train}}(M, \mathcal{M})$

We pre-train policies.

State Entropy Maximization

$$\mathcal{F}_{\text{pre-train}} = H(d^{\pi})$$

$$H(d^{\pi}) := - \underset{s \sim d^{\pi}}{\mathbb{E}} \log d^{\pi}(s)$$

$$d^{\pi}(s) = \frac{1}{T} \sum_{t \in [T]} Pr(s_t = s | \pi, \mu)$$

Unsupervised Pre-Training Objective

 $\max_{M \in \mathfrak{M}} \mathcal{F}_{\text{pre-train}}(M, \mathcal{M})$

We pre-train policies.

State Entropy Maximization

$$\mathcal{F}_{\text{pre-train}} = H(d^{\pi})$$

$$H(d^{\pi}) := - \underset{s \sim d^{\pi}}{\mathbb{E}} \log d^{\pi}(s)$$

$$d^{\pi}(s) = \frac{1}{T} \sum_{t \in [T]} Pr(s_t = s | \pi, \mu)$$

Policy pre-training in MDPs allows for zeroshot generalization [2]. task-misspecification robustness [3]

[2] Zisselmann et al. Explore to Generalize in Zero-Shot RL. NeurIPS 2023

[3] Ashlag et al. State Entropy Regularization for Robust Reinforcement Learning, under-review 2025

(Standard) RL Objective:

 $\max_{d^{\pi} \in \Delta_{\mathcal{S}}} \langle d^{\pi}, r \rangle$

VS

Convex RL Objective:

 $\max_{d^{\pi} \in \Delta_{\mathcal{S}}} \mathcal{F}(d^{\pi})$

One Fun Fact about State Entropy Maximization

(Standard) RL Objective:

 $\max_{d^{\pi} \in \Delta_{\mathcal{S}}} \langle d^{\pi}, r \rangle$

VS

Convex RL Objective:

 $\max_{d^{\pi} \in \Delta_{\mathcal{S}}} \mathcal{F}(d^{\pi})$

Apprenticeship Learning, Inverse RL, Constrained RL, Imitation Learning, Diverse Skill Discovery are **all instances of convex RL** [4].

(I claim RLHF as well, prove me wrong)

[4] Mutti et al., Convex Reinforcement Learning in Finite Trials. JMLR 2023

One Fun Fact about State Entropy Maximization

(Standard) RL Objective:

 $\max_{d^{\pi} \in \Delta_{\mathcal{S}}} \langle d^{\pi}, r \rangle$

VS

Convex RL Objective:

 $\max_{d^{\pi} \in \Delta_{\mathcal{S}}} \mathcal{F}(d^{\pi})$

Apprenticeship Learning, Inverse RL, Constrained RL, Imitation Learning, Diverse Skill Discovery are **all instances of convex RL** [4].

But Convex RL is **hard**: non-Markovian rewards and no Bellman Operators, number of trials matters.

[4] Mutti et al., Convex Reinforcement Learning in Finite Trials. JMLR 2023

One Fun Fact about State Entropy Maximization

One Hardness of Convex RL resides in the **number of trials** [4]:

Finite-Trials State Distribution:

 $d_K(s) = \frac{1}{KT} \sum_{k,t \in [K,T]} 1(\mathbf{s}_k[t] = s)$

VS

Infinite-Trials State Distribution:

$$d^{\pi}(s) = \mathbb{E}_{d_K \sim p_K^{\pi}}[d_K(s)]$$

$$\mathcal{F}(d^{\pi}) \neq \mathbb{E}_{d_K \sim p_K^{\pi}}[\mathcal{F}(d_K)]$$

[4] Mutti et al., Convex Reinforcement Learning in Finite Trials. JMLR 2023

$$\mathbb{M} := (\mathcal{S}, \mathcal{O}, \mathbb{O}, \mathcal{A}, \mathbb{P}, \mu, T)$$

[5] Åström, Optimal control of Markov processes with incomplete state information, 1965

 \mathcal{S} State Space

 \mathcal{O} Observation Space

 $\mathbb{O}: \mathcal{S} \to \Delta(\mathcal{O})$ Observation Matrix

 \mathcal{A} Action Space

 $\pi: \mathcal{I} \to \Delta(\mathcal{A})$ Policy

 $\mathbb{P}:\mathcal{S} imes\mathcal{A} o\Delta(\mathcal{S})$ Transition Matrix

 μ Initial State Distribution

T Episode Horizon $(t \in [T])$

where $\mathcal{I} \in \{\mathcal{O}, \mathcal{O}^T\}$

In Partially Observable Environments:

- **Observations jeopardize pre-training** [A] and agents need to **regularize** with respect to the **observation quality** to counteract the mismatch.
- When learning via a **latent model** [B], learning should explicitly avoid **hallucinatory effects** of the **latent representation.**

- [A] Zamboni et al. The Limits of Pure Exploration in POMDPs: When the Observation Entropy is Enough. RLC 2024
- [B] Zamboni et al. How to explore with belief: state entropy maximization in POMDPs . ICML 2024

Riccardo Zamboni

Maximum State Entropy (\mathbf{MSE}) $\max_{\pi \in \Pi} H(d_{\mathcal{S}}^{\pi})$

VS

Maximum Observation Entropy (MOE) $\max_{\pi \in \Pi} H(d_{\mathcal{O}}^{\pi})$

Maximum State Entropy (\mathbf{MSE}) $\max_{\pi \in \Pi} H(d^{\pi}_{\mathcal{S}})$

VS

Maximum Observation Entropy (MOE) $\max_{\pi \in \Pi} H(d^{\pi}_{\mathcal{O}})$

$$\log\left(\frac{1}{\sigma_{\max}(\mathbb{O}^{\circ - 1})}\right) \le H(d_{\mathcal{S}}^{\pi}) - H(d_{\mathcal{O}}^{\pi}) \le \log(\sigma_{\max}(\mathbb{O}))$$

$$\sigma_{\max}(A):=||A||_2=\sqrt{\lambda_{\max}(A^\star A)}$$
 Maximum Singular Value $A_{ij}^{\circ-1}=\frac{1}{A_{ij}}\;\forall i,j$ Hadamard Inverse

$$\log\left(\frac{1}{\sigma_{\max}(\mathbb{O}^{\circ - 1})}\right) \le H(d_{\mathcal{S}}^{\pi}) - H(d_{\mathcal{O}}^{\pi}) \le \log(\sigma_{\max}(\mathbb{O}))$$

Pro: Bidirectional Bound.

Cons:

- Opaque dependency on \mathbb{O} .
- Independent of the policy.

$$H(d_{\mathcal{S}}^{\pi}) \ge H(d_{\mathcal{O}}^{\pi}) - H(S|O,\pi) + \log(\sigma_{\max}(\mathbb{O}))$$

$$H(S|O,\pi) := \mathbb{E}_{o \sim d_{\mathcal{O}}^{\pi}}[H(\mathbb{O}(o|\cdot))]$$

Pro:

- Implicit Dependency on the policy.
- Accessible in POMDPs.

Cons: Lower-Bound only.

[6] Avalos et al., The Wasserstein Believer. ICLR 2024

State Space

O Observation Space

 $\mathbb{O}: \mathcal{S} \to \Delta(\mathcal{O})$ Observation Matrix

A Action Space

 $\pi: \mathcal{I} \to \Delta(\mathcal{A})$ Policy

 $\mathbb{P}: \mathcal{S} \times \mathcal{A} \to \Delta(\mathcal{S})$ Transition Matrix

 $b \in \mathcal{B} \subseteq \Delta(\mathcal{S})$ Belief Model

 $\mathbb{B}: \mathcal{X} \times \mathcal{A} \times \mathcal{B} \to \mathcal{B} \quad \text{Model Update}$ $= \frac{\mathbb{O}(o|\cdot) \sum_{s'} \mathbb{P}(\cdot|s',a)b(s')}{\sum_{s'} \mathbb{O}(o|s') \sum_{s''} \mathbb{P}(s''|s',a)b(s')}$ $\mu \quad \text{Initial State Distribution}$

Episode Horizon $(t \in [T])$

where $\mathcal{I} \in \{\mathcal{O}, \mathcal{S}, \mathcal{B}, \mathcal{O}^T, \mathcal{S}^T, \mathcal{B}^T\}$

Maximum Believed Entropy (MBE)

$$H(d_{\tilde{\mathcal{S}}}^{\pi}) := \underset{\mathbf{b} \sim p_{\mathcal{B}}^{\pi} d_{\tilde{\mathcal{S}}} \sim \mathbf{b}}{\mathbb{E}} H(d_{\tilde{\mathcal{S}}})$$

Maximum Believed Entropy (MBE)

$$H(d_{\tilde{\mathcal{S}}}^{\pi}) := \underset{\mathbf{b} \sim p_{\mathcal{B}}^{\pi} d_{\tilde{\mathcal{S}}} \sim \mathbf{b}}{\mathbb{E}} H(d_{\tilde{\mathcal{S}}})$$

Pro:

- Learned Model
- Non-Markovianity

Learning over the latent model can be exploited to build **degenerate** (i.e. highly entropic) **representations**.

Cons: Hallucinations

$$H(d_{\tilde{S}}^{\pi}) := \underset{\mathbf{b} \sim p_{\mathcal{B}}^{\pi} d_{\tilde{S}} \sim \mathbf{b}}{\mathbb{E}} H(d_{\tilde{S}})$$

$$\geq H(\mathbf{b}) = \sum_{t \in [T]} H(\mathbf{b}_{t})$$

$$\mid H_{\beta}(d_{\tilde{S}}^{\pi}) := \underset{\mathbf{b} \sim p_{\mathcal{B}}^{\pi}}{\mathbb{E}} [\underset{d_{\tilde{S}} \sim \mathbf{b}}{\mathbb{E}} H(d_{\tilde{S}}) - \beta H(\mathbf{b})]$$

[B] Zamboni et al. How to explore with belief: state entropy maximization in POMDPs . ICML 2024

Riccardo Zamboni Research Talk 29

Parallel MDPs [7]

S_t S_{t+1} T A_t

Markov Games [8]

- [7] Sucar. Parallel Markov Decision Processes. Advances in Probabilistic Graphical Models. 2007
- [8] Littman. Markov games as a framework for multi-agent reinforcement learning. ICML 1994

In Multi-Agent Environments:

- When learning in **parallel environments** [C], **diversity collapse** should be explicitly avoided to have any advantages.
- When learning in **games** [D] over finite-trials, **curse of dimensionality** hinders the scalability of pretraining.

The answer to both these challenges is the use of hybrid representation.

- [C] De Paola and Zamboni. Enhancing Diversity in Parallel Agents: A Maximum State Entropy Exploration Story. ICML 2025
- [D] Zamboni et al. Towards Unsupervised Multi-Agent Reinforcement Learning. EXAIT @ ICML 2025 & Under-review

[C] De Paola and **Zamboni**. Enhancing Diversity in Parallel Agents: A Maximum State Entropy Exploration Story. ICML 2025

[D] Zamboni et al. Towards Unsupervised Multi-Agent Reinforcement Learning. EXAIT @ ICML 2025 & Under-review

Marginal Distribution:

$$d_i^{\pi}(s_i) = \frac{1}{T} \sum_{t \in [T]} Pr(s_{t,i} = s_i | \pi, \mu)$$

Joint Distribution:

$$d^{\pi}(s) = \frac{1}{T} \sum_{t \in [T]} Pr(s_t = s | \pi, \mu)$$

[C] De Paola and Zamboni. Enhancing Diversity in Parallel Agents: A Maximum State Entropy Exploration Story. ICML 2025

[D] Zamboni et al. Towards Unsupervised Multi-Agent Reinforcement Learning. EXAIT @ ICML 2025 & Under-review

Marginal Distribution:

$$d_i^{\pi}(s_i) = \frac{1}{T} \sum_{t \in [T]} Pr(s_{t,i} = s_i | \pi, \mu)$$

Joint Distribution:

$$d^{\pi}(s) = \frac{1}{T} \sum_{t \in [T]} Pr(s_t = s | \pi, \mu)$$

Mixture Distribution:

$$d\tilde{d}^{\pi}(\tilde{s}) = \frac{1}{|\mathcal{N}|} \sum_{i \in [\mathcal{N}]} d_i^{\pi}(\tilde{s})$$

[C] De Paola and Zamboni. Enhancing Diversity in Parallel Agents: A Maximum State Entropy Exploration Story. ICML 2025

[D] Zamboni et al. Towards Unsupervised Multi-Agent Reinforcement Learning. EXAIT @ ICML 2025 & Under-review

In parallel environments, the use of mixture distributions allows for:

- Provably efficient learning in infinite trials, via a parallel formulation of Frank-Wolfe [9]

[9] Hazan et al. Provably efficient Maximum Entropy Exploration. PMLR 2019

[C] De Paola and Zamboni. Enhancing Diversity in Parallel Agents: A Maximum State Entropy Exploration Story. ICML 2025

In **parallel** environments, the use of **mixture distributions** allows for:

- Provably efficient learning in infinite trials, via a parallel formulation of Frank-Wolfe [9]
- In finite trials, optimizing the mixture entropy allows for state distribution diversity.

$$H(\tilde{d}^{\pi}) = \frac{1}{|\mathcal{N}|} \sum_{i \in [\mathcal{N}]} H(d_i^{\pi}) + \frac{1}{|\mathcal{N}|} \sum_{i \in [\mathcal{N}]} KL(d_i^{\pi} || \tilde{d}^{\pi})$$

[9] Hazan et al. Provably efficient Maximum Entropy Exploration. PMLR 2019

[C] De Paola and Zamboni. Enhancing Diversity in Parallel Agents: A Maximum State Entropy Exploration Story. ICML 2025

Unsupervised parallel pre-training leads to better data-collection and higher offline robustness.

Success Rate of **Offline RL for different tasks**, with data collected with **parallel** or **non-parallel pre-trained** policies or **random** policies

In games, the use of mixture distributions allows for:

- **Efficient Lower bounds** to the ideal objective

$$\frac{H(d^{\pi})}{|\mathcal{N}|} \leq \frac{1}{|\mathcal{N}|} \sum_{i \in [\mathcal{N}]} H(d_i^{\pi}) \leq \frac{H(\tilde{d}^{\pi})}{|\mathcal{N}|} \leq H(d_{i^{\star}}^{\pi}) + \log(|\mathcal{N}|) \leq \frac{H(d^{\pi}) + \log(|\mathcal{N}|)}{|\mathcal{N}|}$$

In games, the use of mixture distributions allows for:

- **Efficient Lower bounds** to the ideal objective

$$\frac{H(d^{\pi})}{|\mathcal{N}|} \leq \frac{1}{|\mathcal{N}|} \sum_{i \in [\mathcal{N}]} H(d^{\pi}_i) \leq \frac{H(\tilde{d}^{\pi})}{|\mathcal{N}|} \leq H(d^{\pi}_{i^{\star}}) + \log(|\mathcal{N}|) \leq \frac{H(d^{\pi}) + \log(|\mathcal{N}|)}{|\mathcal{N}|}$$

- Faster concentration of entropies

$$|H(d^{\pi}) - \mathbb{E}_{d_K \sim p_K^{\pi}} H(d_K)| \leq LT \sqrt{\frac{2|\mathcal{S}|\log(2T/\delta)}{K}} \qquad \mathbf{VS} \qquad |H(\tilde{d}^{\pi}) - \mathbb{E}_{\tilde{d}_K \sim p_K^{\pi}} H(\tilde{d}_K)| \leq LT \sqrt{\frac{2|\tilde{\mathcal{S}}|\log(2T/\delta)}{|\mathcal{N}|K}}$$

Unsupervised **multi-agent pre-training** leads to **faster learning** and **zero-shot performances** when done right.

Effect over training dynamics (left) and zero-shot performances (right) of unsupervised policy pre-training, with different objectives, mixture, joint, disjoint pre-training or random initialization.

References

- [1] Laskin et al., Unsupervised reinforcement learning benchmark, NeurIPS 2021
- [2] Zisselmann et al. Explore to Generalize in Zero-Shot RL. NeurIPS 2023
- [3] Ashlag et al. State Entropy Regularization for Robust Reinforcement Learning, pre-print 2025
- [4] Mutti et al., Convex Reinforcement Learning in Finite Trials. JMLR 2023
- [5] Åström, Optimal control of Markov processes with incomplete state information, 1965
- [6] Avalos et al., The Wasserstein Believer. ICLR 2024
- [7] Sucar. Parallel Markov Decision Processes. Advances in Probabilistic Graphical Models. 2007
- [8] Littman. Markov games as a framework for multi-agent reinforcement learning. ICML 1994
- [9] Hazan et al. Provably efficient Maximum Entropy Exploration. PMLR 2019
- [A] **Zamboni** et al. The Limits of Pure Exploration in POMDPs: When the Observation Entropy is Enough. RLC 2024
- [B] Zamboni et al. How to explore with belief: state entropy maximization in POMDPs . ICML 2024
- [C] De Paola and **Zamboni**. Enhancing Diversity in Parallel Agents: A Maximum State Entropy Exploration Story. ICML 2025
- [D] **Zamboni** et al. Towards Unsupervised Multi-Agent Reinforcement Learning. EXAIT @ ICML 2025 & Under-review

More References: Unsupervised Pre-Training

Approach	Pre-training	References	
Low-rank or Block MDPs	Representations	[Misra et al., 2020], [Agarwal et al., 2020], [Modi et al., 2024]	
Contrastive Loss	Representations	[Laskin et al., 2020, Luu et al., 2022],	
		[Yu et al., 2025]	
Reconstruction Loss	Representations	[Burda et al., 2019], [Anand et al., 2019], [Seo et al., 2022],	
		[Meng et al., 2023]	
Supervised Learning Loss	Representations	[Yuan et al., 2022, Yoon et al., 2023]	
Reward-Free RL	Transition Model	[Jin et al., 2020], [Kaufmann et al., 2021], [Ménard et al., 2021],	
		[Zhang et al., 2020d]	
Task-Agnostic RL	Transition Model	[Zhang et al., 2020c]	
Forward-Backward & Behavioral Foundation Models	Transition Model	[Touati and Ollivier, 2021, Tirinzoni et al., 2025, Sikchi et al., 2025]	
World Models	Transition Model	[Ha and Schmidhuber, 2018], [Hafner et al., 2019], [Matsuo et al., 2022]	
		[Hafner et al., 2023], [Pearce et al., 2024]	
Curiosity	Transition Model	[Schmidhuber, 1991], [Pathak et al., 2017], [Burda et al., 2018]	
Reward-Free Data Collection	Dataset	[Wang et al., 2020, Zanette et al., 2020]	
ExORL	Dataset	[Yarats et al., 2022]	
Explore2Offline	Dataset	[Lambert et al., 2022]	
Count-Based	Dataset	[Bellemare et al., 2016]	
Policy Space Compression	Policy Space	[Mutti et al., 2022c]	
Policy Collection-Elimination	Policy Space	[Ye et al., 2023]	
Mutual Information for Skill Discovery	Policy Space	[Gregor et al., 2017], [Eysenbach et al., 2018], [Hansen et al., 2019],	
		[Sharma et al., 2019], [Campos et al., 2020], [Liu and Abbeel, 2021a],	
		[He et al., 2022], [Zahavy et al., 2022]	
Entropy Maximization	Policy	see Table 3.2	
High-Level Hierarchical Policies	Policy	[Pertsch et al., 2021, Baker et al., 2022, Ramrakhya et al., 2023, Yuan et al., 2024]	
Fine-Tuning Mechanisms	Policy	[Campos et al., 2021], [Pislar et al., 2021], [Xie et al., 2021],	
		[Uchendu et al., 2023]	

Riccardo Zamboni Research Talk 44

More References: State Entropy Maximization

Algorithm	Distribution	Space	Reference	
MaxEnt	Discounted	State	[Hazan et al., 2019]	
FW-AME	Stationary	State-Action	[Tarbouriech and Lazaric, 2019]	
SMM	Marginal	State	[Lee et al., 2020]	
IDE^3AL	Stationary	State	[Mutti and Restelli, 2020]	
MEPOL	Marginal	State	[Mutti et al., 2021]	
MaxRényi	Discounted	State-Action	[Zhang et al., 2021a]	
GEM	Marginal	State	[Guo et al., 2021]	
APT	Marginal	State	[Liu and Abbeel, 2021b]	
RE3	Marginal	State	[Seo et al., 2021]	
Proto-RL	Marginal	State	[Yarats et al., 2021]	
MetaEnt	Discounted	State	[Zahavy et al., 2021]	
RL-Explore-Ent	Discounted	State Trajectories	[Zahavy et al., 2021]	
KME	Discounted	State	[Nedergaard and Cook, 2022]	
FSC	Stationary	Observation Trajectories	[Savas et al., 2022]	
CEM	Marginal	State	[Yang and Spaan, 2023]	
$\eta\psi$ -Learning	Discounted	State	[Jain et al., 2023]	
ExpGen	Marginal	State	[Zisselman et al., 2023]	
MOE	Marginal	Observation	[Zamboni et al., 2024b]	
MBE	Marginal	Latent State	[Zamboni et al., 2024a]	
TRPE	Marginal	State	[Zamboni et al., 2025]	
PGL	Marginal	State	[Gemp et al., 2025]	
PGPSE	Marginal	State	[De Paola et al., 2025]	

Riccardo Zamboni Research Talk

One Fun Fact: Convex Objectives

UTILITY ${\cal F}$		APPLICATION	Infinite \equiv Finite
$r \cdot d$	$r \in \mathbb{R}^S, d \in \Delta_{\mathcal{S}}$	RL	✓
$\ d-d_E\ _p^p \ ext{KL}(d d_E)$	$d,d_E\in\Delta_{\mathcal{S}}$	IMITATION LEARNING	×
$-d \cdot \log{(d)}$	$d\in\Delta_{\mathcal{S}}$	Pure Exploration	×
$ ext{CVaR}_{lpha}[r\cdot d] \ r\cdot d - \mathbb{V} ext{ar}[r\cdot d]$	$r \in \mathbb{R}^S, d \in \Delta_{\mathcal{S}}$	RISK-AVERSE RL	×
$r \cdot d$, s.t. $\lambda \cdot d \leq c$	$r, \lambda \in \mathbb{R}^S, c \in \mathbb{R}, d \in \Delta_{\mathcal{S}}$	LINEARLY CONSTRAINED RL	✓
$-\mathbb{E}_z\operatorname{KL}\left(d_z \mathbb{E}_kd_k ight)$	$z \in \mathbb{R}^d, d_z, d_k \in \Delta_{\mathcal{S}}$	DIVERSE SKILL DISCOVERY	×

[4] Mutti et al., Convex Reinforcement Learning in Finite Trials. JMLR 2023

Pre-Training with Partial Observations [A]

Algorithm 1 PG for MOE (Reg-MOE)

- 1: **Input**: learning rate α , number of iterations K, batch size N
- 2: Initialize the policy parameters θ_1
- 3: **for** k = 1, ..., K **do**
- Sample N trajectories $\{(\mathbf{x}_i, \mathbf{a}_i)\}_{i \in [N]}$ with the policy π_{θ_k} Compute $\{H(X|\mathbf{x}_i)\}_{i \in [N]}$ and $\{\nabla_{\theta} \log \pi_{\theta}(\mathbf{x}_i, \mathbf{a}_i) = \sum_{t \in [T]} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_i[t]|\mathbf{x}_i[t])\}_{i \in [N]}$ Update the policy parameters in the gradient direction $\theta_{k+1} \leftarrow \theta_k + \alpha \frac{1}{N} \sum_{i}^{N} \nabla_{\theta} \log \pi_{\theta}(\mathbf{x}_i, \mathbf{a}_i) \left(H(X|\mathbf{x}_i) \beta \sum_{x \in \mathcal{X}} p_X(x|\mathbf{x}_i) H(\mathbb{O}(x|\cdot))\right)$

$$\theta_{k+1} \leftarrow \theta_k + \alpha \frac{1}{N} \sum_{i}^{N} \nabla_{\theta} \log \pi_{\theta}(\mathbf{x}_i, \mathbf{a}_i) (H(X|\mathbf{x}_i) - \beta \sum_{x \in \mathcal{X}} p_X(x|\mathbf{x}_i) H(\mathbb{O}(x|\cdot))$$

- 7: end for
- 8: **Output**: the final policy $\pi_{\theta_{K}}$

[A] Zamboni et al. The Limits of Pure Exploration in POMDPs: When the Observation Entropy is Enough. RLC 2024

Pre-Training with Partial Observations [B]

Algorithm 1 Reg-PG for MaxEnt POMDPs

- 1: **Input**: learning rate α , initial parameters θ_1 , number of episodes K, batch size N, information set \mathcal{I} , proxy class $j \in \{S, \mathcal{O}, \tilde{S}\}$, regularization parameter ρ
- 2: for k = 1 to K do
- Sample N trajectories $\{\tau_j^n \sim p^{\pi_{\theta_k}}\}_{n \in [N]}$ Compute the feedbacks $\{H(d(\tau_j^n))\}_{n \in [N]}$
- Compute $\{\log \pi(\tau_i^n)\}_{n\in[N]}$
- Perform a gradient step $\theta_{k+1} \leftarrow \theta_k + \frac{\alpha}{N} \sum_{n=1}^{N} \log \pi(\tau_j^n) [H(d(\tau_j^n)) \rho \sum_{t=1}^{N} H(b_t^n)]$
- 7: end for
- 8: **Output**: the last-iterate policy π_{θ}^{K}

[B] Zamboni et al. How to explore with belief: state entropy maximization in POMDPs . ICML 2024

Algorithm 2 Parallel Frank-Wolfe.

- 1: **Input:** Step size η , number of iterations T, number of agents N, planning oracle tolerance $\varepsilon_1 > 0$, distribution estimation oracle tolerance $\varepsilon_0 > 0$.
- 2: Set $\{C_0^i = \{\pi_0^i\}\}_{i \in \mathbb{N}}$ where π_0^i is an arbitrary policy, $\alpha_0^i = 1$.
- 3: **for** $t = 0, \dots, T 1$ **do**
- 4: Each agent call the state distribution oracle on $\pi_{\text{mix},t} = \frac{1}{N} \sum_{i} (\alpha_t^i, C_t^i)$:

$$\hat{d}_{\pi_{ ext{mix},t}}^{i} = ext{DensityEst}\left(\pi_{ ext{mix},t},arepsilon_{0}
ight)$$

5: Define the reward function r_t^i for each agent i as

$$r_t^i(s) =
abla H(\hat{d}_{\pi_{ ext{mix},t}}^i) := \left. rac{d\mathcal{H}(X)}{dX}
ight|_{X = \hat{d}_{\pi_{ ext{mix},t}}^i}$$

6: Each agent computes the (approximately) optimal policy on r_t :

$$\pi_{t+1}^i = \operatorname{APPROXPLAN}\left(r_t^i, \varepsilon_1\right)$$
 .

7: Each agent updates

$$C_{t+1}^i = (\pi_0^i, \dots, \pi_t^i, \pi_{t+1}^i),$$

 $\alpha_{t+1}^i = ((1 - \eta)\alpha_t^i, \eta).$

- 8: end for
- 9: $\pi_{\min,T} = \frac{1}{N} \sum_{i} (\alpha_{T}^{i}, C_{T}^{i})$.

Algorithm 1: Policy Gradient for Parallel States Entropy maximization (**PGPSE**)

```
1: Input: Episodes N, Trajectories K, Batch Size B, Learning Rate \alpha, Parameters \theta = (\theta^i)_{i \in [m]}
2: for e \in \{1, \dots, N\} do
3: for itr \in \{1, \dots, B\} do
4: for k \in \{1, \dots, K\} do
5: \tau \sim \pi_{\theta} {Sample parallel trajectories}
6: \log \pi_{\theta_i} \leftarrow \sum_{t=1}^{T-1} \nabla_{\theta} \log \pi_{\theta}(a_t \mid s_t)
7: d_p(s) \leftarrow \frac{1}{km} \sum_{j,i,t=1}^{m,k,T} \mathbf{1}(s_{t,i,j} = s)
8: \nabla_{\theta} \mathcal{J}(\theta) + \log \pi_{\theta_i} \cdot \mathcal{H}(d_p)
9: end for
10: end for
11: \nabla_{\theta} \mathcal{J}(\theta) \leftarrow \frac{1}{B} \nabla_{\theta} \mathcal{J}(\theta)
12: \theta \leftarrow \theta + \alpha \nabla_{\theta} \mathcal{J}(\theta)
13: end for
14: Output: Policies \pi_{\theta} = (\pi_{\theta^i}^i)_{i \in [m]}
```


Algorithm: Trust Region Pure Exploration (TRPE) 1: Input: exploration horizon T, trajectories N, trust-region threshold δ , learning rate η 2: Initialize $\boldsymbol{\theta} = (\theta^i)_{i \in [\mathcal{N}]}$ 3: for epoch = $1, 2, \ldots$ until convergence do 4: Collect N trajectories with $\pi_{\boldsymbol{\theta}} = (\pi_{\theta^i}^i)_{i \in [\mathcal{N}]}$ 5: for agent $i = 1, 2, \ldots$ concurrently do 6: Set datasets $\mathcal{D}^i = \{(\mathbf{s}_n^i, \mathbf{a}_n^i), \zeta_1^n\}_{n \in [N]}$ 7: $h = 0, \theta_h^i = \theta^i$ 8: while $D_{\mathrm{KL}}(\pi_{\theta_h^i}^i \| \pi_{\theta_0^i}^i) \leq \delta$ do 9: Compute $\hat{\mathcal{L}}^i(\theta_h^i/\theta_0^i)$ via IS. 10: $\theta_{h+1}^i = \theta_h^i + \eta \nabla_{\theta_h^i} \hat{\mathcal{L}}^i(\theta_h^i/\theta_0^i)$ 11: $h \leftarrow h + 1$ 12: end while 13: $\theta^i \leftarrow \theta_h^i$ 14: end for

[D] Zamboni et al. Towards Unsupervised Multi-Agent Reinforcement Learning. EXAIT @ ICML 2025 & Under-review

15: **end for**

16: **Output**: joint policy $\pi_{\theta} = (\pi_{\theta i}^{i})_{i \in [\mathcal{N}]}$

