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Abstract

REINFORCEMENT LEARNING offers a powerful paradigm for solving sequen-
tial decision-making problems, particularly in environments characterized by
complex dynamics, partial and noisy observations, or the need for coordinated

behavior among multiple agents. Despite remarkable progress, contemporary Rein-
forcement Learning methods often struggle to acquire general-purpose behaviors that
reliably transfer across tasks, especially in non-trivial and realistic settings.

In contrast, unsupervised pre-training has become a fundamental driver of general-
ization in non-sequential domains, as demonstrated by the success of Large Language
Models trained on massive unlabeled corpora. Inspired by this paradigm, unsupervised
pre-training in Reinforcement Learning has recently emerged as a promising approach
to improve generalization across diverse tasks. This framework typically unfolds in two
phases: an initial phase in which the agent interacts with the environment without any
task-specific supervision, followed by a fine-tuning phase where the acquired knowl-
edge is adapted to a specific downstream objective. This two-phase approach allows
agents to first interact freely with the environment to acquire transferable knowledge,
which can later be fine-tuned for specific downstream tasks.

Despite its promise, prior research on unsupervised pre-training in Reinforcement
Learning has remained largely confined to simplified settings, often involving a single
agent with full access to the environment’s state, or focused narrowly on representation
learning under partial observability. This thesis broadens this scope by building on the
empirical success of Maximum State Entropy methods in fully observable, single-agent
settings, and extending their applicability to more challenging and realistic domains,
specifically those involving partial observability and multiple agents.

Thus, our approach to unsupervised pre-training is centered on the maximization
of state entropy, with the goal of inducing policies that generate diverse and informa-
tive state distributions, even when the true state is hidden or distributed across agents.
Through a combination of theoretical analysis and empirical validation, this work gen-
eralizes entropy-based objectives to complex scenarios, laying the groundwork for a
principled and scalable framework for unsupervised pre-training. Ultimately, our goal
is to support more scalable and general-purpose Reinforcement Learning systems ap-
plicable to real-world domains.
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Sommario

IL REINFORCEMENT LEARNING rappresenta un paradigma estremamente efficace
per affrontare problemi decisionali sequenziali, soprattutto in contesti caratterizzati
da dinamiche complesse, osservazioni parziali, o dalla necessità di comportamenti

coordinati tra più agenti. Nonostante i notevoli progressi, gli approcci attuali al Re-
inforcement Learning faticano ancora a sviluppare comportamenti generali, in grado
di trasferirsi con affidabilità da un compito all’altro, in particolare in scenari realis-
tici. Al contrario, il pre-training non supervisionato si è affermato come un fattore
determinante per la generalizzazione in domini non sequenziali, come dimostrato dal
successo dei Large Language Models addestrati su vasti insiemi di dati non etichettati.
Ispirandosi a questo paradigma, il pre-training non supervisionato nel Reinforcement
Learning è emerso come una strategia promettente per favorire la generalizzazione su
un ampio spettro di tasks. Tale approccio si articola generalmente in due fasi: una fase
preliminare in cui l’agente interagisce liberamente con l’ambiente senza vincoli speci-
fici, e una successiva fase di fine-tuning in cui le conoscenze acquisite vengono adattate
a un obiettivo specifico. Questo schema a due fasi consente di esplorare l’ambiente
in modo autonomo per acquisire conoscenze trasferibili, che possono poi essere raf-
finate in funzione di compiti mirati. Nonostante il suo potenziale, la ricerca sul pre-
training non supervisionato nel Reinforcement Learning è rimasta finora confinata a
contesti semplificati, spesso limitati a un singolo agente con piena osservabilità dello
stato dell’ambiente. Questa tesi amplia tale prospettiva, facendo leva sul successo em-
pirico dei metodi di Maximum State Entropy in scenari con un singolo agente e piena
osservabilità, ed estendendone l’applicazione a contesti più complessi e realistici, carat-
terizzati da osservazioni parziali e dalla presenza di più agenti. L’approccio proposto
si fonda dunque sulla massimizzazione dell’entropia degli stati, con l’obiettivo di in-
durre politiche capaci di generare distribuzioni di stati diversificate e informative, anche
quando lo stato reale è nascosto o distribuito tra diversi agenti. Attraverso un’analisi
teorica combinata a una solida validazione empirica, questo lavoro estende gli obiettivi
basati sull’entropia a scenari complessi, ponendo le basi per un framework rigoroso e
scalabile di pre-training non supervisionato. In ultima analisi, l’obiettivo è contribuire
allo sviluppo di sistemi di Reinforcement Learning più generali e scalabili.

III
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CHAPTER1
Introduction

Let us imagine you have been invited to your friend’s house for a board game night.1

The game you are about to play is wildly complex; an intimidating mix of cards, a
tangle of buffs and debuffs, and enough quests and side quests to make David Foster
Wallace blush. Inevitably, there is that friend who insists you just dive in: "Don’t worry,
you’ll get the hang of it as we go!" Fast forward thirty minutes, and you hear: "Oh yeah,
that move did make sense back then... but now that you’ve done that... well." Not only
is the whole situation deeply humbling, but, more importantly, it hinders your ability to
learn.

As anyone who has lived through such chaos can confirm, a better approach might
be to first explore the game without the pressure of winning. You could take time to
understand how cards interact, how actions lead to consequences, and how the system
behaves overall. If your friends are patient enough to let you play around without wor-
rying about scoring points or advancing the quest, this more unsupervised approach to
learning can significantly boost your understanding, and later make your efforts toward
actually completing the quest far more effective.

Now, let us translate this little allegory into the more formal language of reinforce-
ment learning. You, the learner, are called an agent. Playing a card is referred to as
taking an action. The pawns, the board, the face-up cards, all of that is part of the envi-
ronment. A particular configuration of the environment is a state. The current quest you
are attempting to complete is a task, and the points you earn are rewards. In reinforce-
ment learning, an agent interacts with its environment by choosing actions sequentially
in order to maximize the cumulative reward, ultimately, learning how to play and win
the game.

1The probability of the author being invited to a board game night is extremely low. This is, in fact, why this thesis exists and
why it is about Reinforcement Learning.

1
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Chapter 1. Introduction

This thesis is for those who would like to ensure their AI agent does not suffer the
same confusion and humiliation, or more formally, those interested in enabling better
generalization across tasks with limited supervision. While past work has explored
how unsupervised learning can be framed within reinforcement learning, especially
in simplified settings with a single agent and fully observable environments, we push
the boundary further. This work investigates how unsupervised pre-training can be
scaled to realistic scenarios: where other agents exist, the underlying conditions of the
environment are hidden (i.e., under partial observability), or they must cooperate (i.e.,
in multi-agent settings).

We focus on encouraging agents to explore diverse and novel states as a proxy for
acquiring useful experience. This strategy, known as state entropy maximization, is
compelling for several reasons: it is conceptually simple, paves the way for a richer
class of problems than standard RL, and remains practical by using the standard RL
policy-learning pipeline. Nonetheless, this strategy becomes substantially more nu-
anced in the presence of partial observability or multiple agents. In such settings, what
constitutes a "diverse" state becomes ambiguous, and exploration itself may require co-
ordination or belief inference. One of the goals of this work is to shed light on these
challenges and demonstrate that even seemingly straightforward methods become sig-
nificantly more complex in realistic environments.

The contributions of this thesis span both theory and practice. We offer a theoretical
characterization of unsupervised pre-training under these challenging conditions, and
proposing practical, scalable solutions designed for richer, more realistic domains.

Reinforcement Learning

Reinforcement Learning [RL, Sutton, 2018] sits comfortably under the broad umbrella
of Machine Learning (ML). Famously defined by Tom M. Mitchell as "the study of
computer algorithms that allow computer programs to automatically improve through
experience" [Mitchell, 1997], ML has at its heart a central character: a computer, or
more specifically, an artificial agent, learning from experience. That is, data.

What sets RL apart from its ML cousins is its sequential nature. Unlike classifica-
tion or regression tasks, where a model makes one-shot predictions, in RL each decision
affects not only the immediate outcome but also the future data that the agent will col-
lect. This means that learning is not just about understanding the world, it is also about
influencing how you get to interact with it next. In short, learning shapes experience,
and experience shapes learning, in an ongoing feedback loop.

The term reinforcement might suggest something soft and fuzzy, perhaps a treat for
a well-behaved puppy. In reality, it has its roots in behavioral psychology, where it is
defined as "a consequence applied that will strengthen an organism’s future behaviour
whenever that behaviour is preceded by a specific antecedent stimulus" [Skinner, 1938,
Schultz, 2015]. Translated into AI terms, this simply means the agent receives feed-
back, a scalar signal known as a reward, which helps it understand how well it is doing
at a given task. RL agents are goal-driven, and this goal is usually framed as maxi-
mizing some form of utility function. That function is often, quite simply, the sum of
rewards collected over time.

For such a seemingly straightforward framework, RL is surprisingly powerful. One
of its greatest strengths is its environment-agnosticism: you do not need to tell the

2
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agent how the environment works. Instead, it can learn through trial and error, mak-
ing it especially valuable for tasks where explicit models are hard to come by. This
quality has fueled RL’s recent explosion across practical applications: robotic loco-
motion [Haarnoja et al., 2018a, Smith et al., 2022] and autonomous driving [Kiran
et al., 2021, Cusumano-Towner et al., 2025], video games [Mnih et al., 2013, 2015,
Silver et al., 2016, Berner et al., 2019, Wurman et al., 2022], industrial robotics [Meyes
et al., 2017, Gu et al., 2017], manipulation [Akkaya et al., 2019, Andrychowicz et al.,
2020, Lu et al., 2022], nuclear-reactor control [Duval et al., 2024], strategic multi-
agent coordination [Samvelyan et al., 2019, Vinyals et al., 2019], planning under uncer-
tainty [Brown and Sandholm, 2019, Perolat et al., 2022], and even economic behaviour
like trading, bartering and diplomacy [Johanson et al., 2022, Bakhtin et al., 2022].

But RL comes with a catch. It leans heavily on the existence of a well-defined
reward feedback: a precise, scalar signal that tells the agent how it is doing. This
assumption is so central that it has its own name: the reward hypothesis, articulated by
Sutton and Littman as the idea that "all of what we mean by goals and purposes can
be well thought of as maximization of the expected value of the cumulative sum of a
received scalar signal (reward)" [Sutton, 2004]. This hypothesis has sparked plenty of
debate and empirical inquiry, with Bowling et al. [2023] being among the most notable
recent efforts to test its limits.

In this thesis, we take a different stance. We ask:

What happens when the reward signal goes missing entirely?

Rather than treating the absence of reward as a bug in the system, we embrace it.
We explore what RL can still accomplish when there is no task to optimize, no score to
chase, and no "good job" signal at the end of a move.

Unsupervised Reinforcement Learning

Ideally, reward is a natural part of the system at hand, an emergent signal that flows
organically from the task itself. In practice, however, it rarely shows up uninvited.
Instead, reward functions are often handcrafted, requiring meticulous design choices to
ensure the agent does something even remotely useful. This process is tedious, brittle,
and deeply task-specific. As a result, Reinforcement Learning becomes unnecessarily
constrained: each new task demands a new design, and generalisation across tasks
remains limited at best.

Supervised learning, by contrast, has built an impressive toolbox for tackling the
generalisation problem. A particularly fruitful strategy has been unsupervised pre-
training, where models are first trained without supervision, then fine-tuned on a spe-
cific downstream task. This simple yet powerful recipe lies at the heart of recent break-
throughs in generative models for images [Ramesh et al., 2022], video [Singer et al.,
2022], and most famously, language [Brown et al., 2020b, Alayrac et al., 2022]. In
these domains, learning from scratch every time is not just inefficient, it is old fash-
ioned. As argued in Agarwal et al. [2022], real-world applications call for methods that
can leverage prior experience, not ignore it.

Which brings us to RL: can it enjoy the same benefits from unsupervised pre-
training? The question is still open, but the framework of unsupervised Reinforcement

3
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Chapter 1. Introduction

Learning, formally articulated in Laskin et al. [2021] (though its roots go back to ideas
in Hazan et al. [2019], Mutti and Restelli [2020]), attempts to answer it directly.

The intuition is simple: rather than chasing a reward from the start, the agent is
set free to explore the environment without any specific goal, no score to maximise,
no task to complete. This is the pre-training phase, where the agent’s job is simply to
"solve the environment", in the sense of acquiring reusable knowledge, structure, and
behaviours. What this knowledge looks like can vary: it could be a compact set of
policies that span relevant behaviours [Mutti et al., 2022c], a compressed abstract state
representation [Agarwal et al., 2020], a model of environmental dynamics [Jin et al.,
2020], a strategy that ensures thorough exploration [Hazan et al., 2019], or even just
a rich dataset of diverse interactions [Yarats et al., 2022]. Indeed, the idea of using
unsupervised signals to boost RL dates back to longer-term contributions [Barto et al.,
2004, Oudeyer and Kaplan, 2007, Little and Sommer, 2013, Schmidhuber, 2010], but
the unsupervised RL framework was the one to provide a clean and concise way to
think about it in a pre-training and fine-tuning paradigm.

Once this unsupervised pre-training is complete, the second phase begins: the agent
is finally given a task, and its success depends on how well the pre-trained model helps
it perform. This is supervised fine-tuning, where we evaluate the utility of all that prior
unsupervised effort, be it via planning with a learned model, or collecting samples using
a pre-trained policy.

In this thesis, however, we zoom in on the first act. Our focus lies squarely on
the unsupervised pre-training itself, with fine-tuning considered mainly as a means of
evaluation. In particular, we will explore one prominent and conceptually appealing
instantiation of unsupervised pre-training: state entropy maximisation.

State Entropy Maximization

Within the unsupervised pre-training paradigm, state entropy maximisation offers a
particularly elegant and compelling objective. The idea is deceptively simple: learn a
policy that induces a state distribution as entropic as possible [Hazan et al., 2019]. In
other words, we ask the agent to roam far and wide, reaching many different parts of
the environment with high probability. Yet, this is not the same as randomly pressing
buttons. A policy that samples actions uniformly at random in every state might look
"exploratory", but it completely ignores the sequential nature of RL. Reaching some
states requires very particular chains of decisions, not just noise. This is why state
entropy maximisation is a non-trivial and deeply RL-specific challenge.

What makes this objective unsupervised is its indifference to the environment’s feed-
back. There is no reward signal guiding behaviour, just an intrinsic desire to visit as
many different states as possible. Learning such a policy is far from easy, but the ben-
efits are significant. In the context of offline RL, the importance of collecting diverse
data,also known as coverage,has been shown to be fundamental [Levine et al., 2020,
Antos et al., 2008, Chen and Jiang, 2019, Foster et al., 2021, Jin et al., 2021b, Zhan
et al., 2022]. And the story does not stop there: in online RL, coverage can accel-
erate learning [Xie et al., 2022], and in fine-tuning scenarios, a well-initialised policy
with broad state coverage can lead to better downstream performance [Xie et al., 2021].
Even representation learning and reward inference benefit: a state entropy-maximising
policy helps uncover the structure of the environment more efficiently [Tarbouriech
et al., 2021, Jin et al., 2020].

4
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Of course, state entropy is not a silver bullet. It does not always align with ev-
ery downstream goal, for instance, coverage as formalised via concentrability coeffi-
cients [Antos et al., 2008] may require different kinds of exploratory behaviour. But
unlike many theoretically sound exploration criteria, state entropy maximisation has a
powerful redeeming quality: it is practical.

This thesis will argue that, despite its abstract appeal, state entropy maximisation can
in fact be implemented in realistic environments. We will show that it remains feasible
even when the agent sees only noisy, partial observations or when there is more than
one agent in play. What looks intuitive on paper turns out to be far from straightforward
in these richer settings. But that is precisely the point: by tackling these cases, we aim
to understand not just what state entropy maximisation is in theory, but what it can
become in practice.

Contributions

This thesis offers a systematic extension of unsupervised pre-training in Reinforcement
Learning to decision-making settings that go beyond the classic single-agent, fully ob-
servable case. In single-agent settings, the problem has been extensively studied and
is largely understood. A popular approach, first introduced by Hazan et al. [2019] as
state entropy maximization, has shown remarkable empirical success [Zisselman et al.,
2023] and has also been framed within the broader convex Reinforcement Learning
framework [Hazan et al., 2019, Zhang et al., 2020a], in which agents optimize con-
vex utility functions. However, this framework was recently shown to suffer from a
potentially harmful mismatch between theoretical tractability and practical effective-
ness [Mutti et al., 2022a].

Nonetheless, key aspects, ranging from problem formulation, structural properties,
algorithm design, to the effect of pre-training in more complex scenarios, remained
open. To fill this gap, we first extend the convex Reinforcement Learning framework
to partially observable settings [Åström, 1965], i.e., settings in which the agent lacks
direct access to the environment’s true state. We then describe how state entropy max-
imization can be meaningfully extended to such settings. We characterize the funda-
mental limitations of directly maximizing entropy over raw observations through per-
formance bounds and propose an entropy-regularized algorithm to address this issue
in practice, accounting for the mismatch introduced by partial observability. Subse-
quently, we explore a more contemporary approach by learning belief or latent repre-
sentations. We characterize both the potential and, more importantly, the risks associ-
ated with such representations through the notion of hallucinations, and we propose an
algorithm that leverages these representations while actively counteracting their draw-
backs. These results appeared in Zamboni et al. [2024a,b].

We then turn our attention to environments with multiple agents, such as Markov
Games [Littman, 1994a], or parallel Markov Decision Processes [Sucar, 2007]. We
first characterizing alternative formulations, highlighting their respective advantages
and limitations. We extend results from single-agent convex Reinforcement Learning
to these settings, showing how these problems, while theoretically tractable, remain
non-trivial in practice. We introduce a scalable, decentralized algorithm to address
these challenges and demonstrate that policy pre-training via state entropy maximiza-
tion, when done properly, offers surprising benefits in terms of accelerated learning and
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Chapter 1. Introduction

zero-shot performance. These results, to some extent, corroborate findings in single-
agent environments [Zisselman et al., 2023], and appeared in Zamboni et al. [2025b],
De Paola et al. [2025].

Additionally, we offer a novel perspective on Maximum Entropy methods by explor-
ing their utility in another corner of the RL landscape: representation learning. We in-
troduce a new algorithm that combines the maximum entropy principle with ideas from
distributional Reinforcement Learning [Bellemare et al., 2017, 2023] to learn represen-
tations that are both informative and useful for downstream tasks. These considerations
were first presented in Zamboni et al. [2023].

Overview

Chapter 2 provides a primer on sequential decision-making and Reinforcement Learn-
ing, introducing the more complex models that will be central to our investigation,
ranging from partially observable and multi-agent settings to those characterized by
convex utilities. Chapter 3 offers a bird’s-eye view of the unsupervised RL framework:
we present the general problem formulation and survey a (deliberately non-exhaustive)
portion of the relevant literature. Special attention is given to the state entropy maxi-
mization formulation, which remains central throughout the thesis. In Chapter 4, we
explore how state entropy maximization can be adapted to partially observable settings.
Chapter 5 extends the discussion to environments with multiple agents. Appendix A
contains an additional example demonstrating the utility of Maximum Entropy meth-
ods for representation learning. Finally, Appendix B provides all omitted formal results
and proofs from the main chapters, while Appendix C includes additional experimental
details for the practical methodologies presented.

Notation

Throughout this thesis, we adopt the following notational conventions. For any integer
N ă 8, we define rN s :“ t0, 1, . . . , N ´ 1u and, more generally, rn : N s :“ tn, n `

1, . . . , N ´ 1u. Sets are denoted using calligraphic letters, e.g., A, and their cardinality
by |A|. The T -fold Cartesian product of a set A is denoted AT :“ ˆtPrT sA. The
probability simplex over A is denoted by ∆A :“ tp P r0, 1s|A| :

ř

aPA ppaq “ 1u, and
the space of conditional distributions from A to another set B is written as ∆B

A.
Given vectors v “ pv1, . . . , vT q and u “ pu1, . . . , uT q, we denote by v ‘ u :“

pv1, u1, . . . , vT , uT q their concatenation and vJ, uJ their transpose. A random vector
of dimension T is denoted as x “ px1, . . . , xT q, with xrts indicating the entry at in-
dex t P rT s, or simply xt when clarity allows. For a vector v P RN , we define its
infinity norm as }v}8 :“ maxiPrNs vi. Similarly, for a matrix V P RNˆM , we denote
the infinity norm as }V}8 :“ maxpi,jqPrNsˆrMs |Vij|, its conjugate transpose as V˚, and
its Hadamard (element-wise) inverse as V˝´1, where pV˝´1qij :“ 1{Vij for all i, j.
The vectors of eigenvalues and singular values of V are denoted λpVq and σpVq, re-
spectively. The spectral norm is given by }V}2 :“

a

λmaxpV˚Vq “ σmaxpVq, where
λmaxpVq :“ }λpVq}8 and σmaxpVq :“ }σpVq}8.

For probability distributions p1 and p2 over the same domain, we denote their total
variation distance by dTVpp1, p2q :“

1
2

ř

xPX |p1pxq´p2pxq|, and their Kullback–Leibler
divergence by DKLpp1}p2q :“

ř

xPX p1pxq log p1pxq

p2pxq
. Let X be a random variable with

support X and associated distribution pX . The Rényi entropy of order α is defined as
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HαppXq “ 1
1´α

log p
ř

xPX pXpxqαq . From this, we recover the Shannon entropy as the
limit HpXq :“ limαÑ1HαpXq “ ´

ř

xPX pXpxq log pXpxq, and also the min-entropy
as H8pXq :“ limαÑ8 HαpXq “ ´ log pmaxxPX pXpxqq. Finally, for any differentiable
function f : Rn Ñ R, we denote its gradient as ∇f : Rn Ñ Rn.
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CHAPTER2
Reinforcement Learning

This chapter introduces the foundational concepts of RL that serve as the backbone for
the remainder of this dissertation. Our aim is not to exhaustively detail every nuance
of the field, but rather to provide a focused summary of the core ideas necessary to
understand and contextualize the subsequent contributions.

We begin by outlining the key models that formalize decision-making under uncer-
tainty, including the widely adopted Markov Decision Processes and their generaliza-
tions. We then present a high-level classification of RL algorithms, highlighting their
main structural features and practical considerations. Finally, we discuss more recent
directions aimed at addressing complex scenarios, like learning with partial observa-
tions, multiple agents and under convex utility functions.

In the following chapter, we will leave out several important aspects of RL that
fall outside the scope of this thesis but might be of interest for particularly curious
readers. For a comprehensive treatment of sequential decision-making and the theory
of Markov Processes, we refer such readers to Puterman [2014]. For an accessible and
more modern overview of RL, we recommend the excellent monographs [Sutton, 2018,
Agarwal et al., 2019, Szepesvári, 2022].

2.1 A Primer on Sequential Decision-Making

In this section, we introduce the fundamental concepts underlying the framework of
sequential decision-making and establish the notation that will be used throughout the
thesis.

9
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Chapter 2. Reinforcement Learning

2.1.1 Introduction to Markov Processes

We begin by defining a Controlled Markov Process (CMP) as a (stochastic) system
whose dynamics can be influenced through the execution of actions. Formally, a CMP
is described by the tuple

MT_γ :“ pS,A,P, pT _ γq, µq, (2.1)

where S denotes the state space, with (finite) cardinality S :“ |S|, and A is the action
space, with size A :“ |A|. The function P : S ˆA Ñ ∆S defines the transition model,
such that P ps1|s, aq represents the probability of reaching state s1 after executing action
a in state s. The process starts from an initial state s0 sampled from a distribution
µ P ∆S . Finally, the dynamics of the system may either terminate after a finite number
of steps T ă 8 (finite horizon), or continue under the presence of a discount factor
γ P r0, 1s, such that the probability of the process ending at the next step is 1 ´ γ.

We use the notation pT _γq to indicate that either a time horizon or a discount factor
is specified, but not both. In the former case, the process is said to be episodic, while
in the latter it is discounted if γ ă 1, and undiscounted when γ “ 1.

The defining characteristic of any Markovian process is the Markov Property, which
states that the probability of transitioning to a future state depends only on the current
state and action, and not on the sequence of states and actions that preceded it. This
property is reflected in the form of the transition model Pps1|s, aq.

In RL, we are primarily interested in those CMPs that are endowed with a feed-
back mechanism in the form of scalar rewards. These are known as Markov Decision
Processes [MDPs, Puterman, 2014], and are defined as:

MR
T_γ :“ pS,A,P, R, pT _ γq, µq, (2.2)

where pS,A,P, pT_γq, µq is a CMP andR : SˆA Ñ R is a reward function assigning
a finite reward Rps, aq to each state-action pair.1

An MDP unfolds through the interaction between an agent and the environment.
At time step t “ 0, the agent begins in an initial state s0 „ µ. At each time step
t, it selects an action at, receives a reward Rpst, atq, and transitions to a new state
st`1 „ Pp¨|st, atq. In the episodic setting, this process repeats for a fixed number of
steps T , until the episode ends. In the discounted setting, interaction proceeds for a
random number of steps Tγ , where Tγ ´ 1 „ Geop1 ´ γq. In the undiscounted setting
(γ “ 1), the process continues indefinitely.

Each episode generates a trajectory consisting of a state sequence s “ ps0, . . . , sT´1q P

T T
S Ď ST , an action sequence a “ pa0, . . . , aT´1q P T T

A Ď AT , and the corresponding
state-action sequence sa “ pst, atqtPrT s P T T

SA Ď ST ˆ AT .2

2.1.2 Policy Classes

In RL, the agent’s behavior is encoded by a policy, denoted as π, which governs the
selection of actions during interaction with an environment. A policy is defined as a
sequence of decision rules π :“ pπtqtPrT s, where each rule πt maps past state trajectories
s P T t

S to a probability distribution over actions. Formally, πt : T t
SA Ñ ∆A, and the

1Reward functions can also be defined solely over states, or as functions of ps, a, s1q.
2In the discounted setting, Tγ replaces T , while for undiscounted cases, the sequences are infinite.
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2.1. A Primer on Sequential Decision-Making

conditional probability of taking action a after observing sa is denoted πtpa|saq. The
full policy space is denoted Π, and the subset of deterministic policies, where each πt
maps deterministically to a single action, is denoted ΠD.

We distinguish between different classes of policies. Non-Markovian (NM) policies,
denoted ΠNM, allow decision rules to depend on the entire history of visited states.
In contrast, Markovian (M) policies, denoted ΠM, are time-invariant and memoryless,
consisting of a constant decision rule π : S Ñ ∆A applied at every step.

When a CMP is coupled with a Markovian policy π P ΠM, the resulting system
forms a Markov Chain with a state-to-state transition model defined as:

Pπ
ps1

|sq :“
ÿ

aPA
πpa|sqPps1

|s, aq. (2.3)

2.1.3 Induced Distributions

The repeated interaction of an agent with an environment under a given policy π induces
a sequence of probability distributions over states. Specifically, the state distribution at
time t is given by:

dπt psq :“ Prpst “ s | πq, (2.4)

which evolves recursively according to the flow equation:

dπt psq “
ÿ

s1PS
dπt´1ps

1
qPπ

ps | s1
q. (2.5)

For undiscounted processes and under standard regularity conditions [Puterman,
2014], this sequence converges to a stationary state distribution, defined as:

dπ8psq :“ lim
tÑ8

dπt psq. (2.6)

In discounted processes with γ ă 1, the policy π induces a discounted state distri-
bution, defined as the weighted sum of the time-indexed state distributions:

dπγpsq “ p1 ´ γq

8
ÿ

t“0

γtdπt psq, (2.7)

which satisfies the recursive identity:

dπγpsq “ p1 ´ γqµpsq ` γ
ÿ

s1PS
dπγps1

qPπ
ps | s1

q. (2.8)

In the episodic case with finite horizon T , the policy induces a marginal state distri-
bution:

dπT psq :“
1

T

ÿ

tPrT s

dπt psq, (2.9)

where the starting distribution is dπ0 psq “ µpsq.
Beyond state-wise distributions, a policy π also induces a probability distribution

over entire trajectories. In the episodic setting, the joint probability of a state-action
trajectory sa “ ps0, a0, . . . , sT´1, aT´1q P T T

SA is given by:

pπpsaq “ µps0q
ź

tPrT s

πpat | stqPpst`1 | st, atq. (2.10)
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Chapter 2. Reinforcement Learning

Moreover, a single trajectory s induces an empirical state distribution d P ∆S via:

dps | sq :“
1

T

ÿ

tPrT s

1psrts “ sq. (2.11)

We will slightly abuse notation and denote by pπ the probability of sampling this em-
pirical distribution under policy π. When collecting n independent trajectories from π,
the resulting empirical distribution is:

dnpsq :“
1

n

ÿ

kPrns

dkpsq, (2.12)

and its sampling distribution is denoted pπn. Accordingly, we define the expected state
distribution induced by π as:

dπpsq :“ E
dn„pπn

rdnpsqs. (2.13)

2.1.4 Performance Indexes, Value Functions and Solution Concepts

As previously introduced, the objective of a RL agent interacting with a MDP is to
maximize the long-term accumulation of rewards. The term "long-term" reflects the
agent’s far-sighted nature: rather than focusing solely on immediate rewards, the agent
considers future outcomes as well. This notion is formalized through the concept of a
value function, which depends on the structure of the underlying MDP.

In an episodic MDP MR
T , the value function V π

t psq represents the expected cumu-
lative reward obtained by starting in state s at time step t and following a policy π until
the end of the episode. Formally, this is defined as:

V π
t psq :“ E

π,MR
T

”

ÿ

t1Prt:T s

Rpst1 , at1q
ˇ

ˇ st “ s
ı

. (2.14)

The corresponding state-action value function Qπ
t ps, aq captures the expected return

from taking action a in state s at time t and thereafter following policy π. This can be
expressed as:

Qπ
t ps, aq :“ Rps, aq ` E

s1„Pp¨|s,aq

”

V π
t`1ps

1
q

ı

. (2.15)

For a discounted MDP MR
γ with discount factor γ P r0, 1q, the value function is

modified to include the discounting of future rewards. The state value function is given
by:

V π
γ psq :“ E

π,MR
γ

”

8
ÿ

t“0

γtRpst, atq
ˇ

ˇ s0 “ s
ı

, (2.16)

while the corresponding state-action value function becomes:

Qπ
γps, aq :“ Rps, aq ` γ E

s1„Pp¨|s,aq

“

V π
γ ps1

q
‰

. (2.17)

Value functions serve as performance indexes conditioned on the choice of initial
state and play a fundamental role in RL. They are primarily used for policy evaluation,
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2.1. A Primer on Sequential Decision-Making

i.e., assessing the performance of a given policy. However, for the purpose of policy op-
timization, i.e., improving or discovering high-performing policies without access to the
environment model, the state-action value function becomes central as it contains more
granular information about the decision process. Additionally, the advantage function
is defined as the difference between the state-action value and the value function under
policy π:

Aπ
t_γps, aq “ Qπ

t_γps, aq ´ V π
t_γpsq. (2.18)

Intuitively, it quantifies how much better (or worse) taking action a in state s is com-
pared to the average expected return from that state.

An important property of value functions in MDPs is their recursive nature. For
example, in the discounted setting, the value of a state is expressed in terms of the
values of successor states through the relation:

V π
γ psq :“ E

a„πp¨|sq

”

Qπ
γps, aq

ı

, (2.19)

where we have assumed γ ă 1.3

This recursive property leads to the Bellman Expectation Equation [Bellman, 1952],
which defines the value function as:

V π
γ psq “ E

a„πp¨|sq

”

Rps, aq ` γ E
s1„Pp¨|s,aq

“

V π
γ ps1

q
‰

ı

. (2.20)

The above relation can be interpreted as the application of the Bellman Expectation
Operator T π to a generic function f : S Ñ R, which is defined as:

pT πfqpsq “ E
a„πp¨|sq

”

Rps, aq ` γ E
s1„Pp¨|s,aq

“

fps1
q
‰

ı

. (2.21)

Since the agent seeks to maximize long-term return, we also introduce the Bellman
Optimality Operator, denoted as T ‹, which incorporates a maximization over actions:

pT ‹fqpsq “ max
aPA

”

Rps, aq ` γ E
s1„Pp¨|s,aq

“

fps1
q
‰

ı

. (2.22)

With these definitions in place, we define the performance objective for an MDP
MR

T_γ as:

JMR
T_γ

pπq :“ E
s„µ

”

V π
0_γpsq

ı

, (2.23)

where the value function used depends on whether the MDP is episodic (γ “ 0) or
discounted.

An alternative but equivalent formulation of the objective considers the distribution
over trajectories. In episodic MDPs, the return function Gt maps a trajectory sa to the
cumulative reward collected up to time t:

Gtpsaq :“
ÿ

t1Prts

Rpst1 , at1q. (2.24)

3The interested reader can refer to Puterman [2014] for the corresponding recursion in episodic MDPs.
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Chapter 2. Reinforcement Learning

In the discounted case, the return is defined with discounting:

Gγpsaq :“
8
ÿ

t“0

γtRpst, atq. (2.25)

The expected return over trajectories sampled from a policy then yields the same
objective:

JMR
T_γ

pπq :“ E
sa„pπ

”

GT_γpsaq

ı

. (2.26)

Now, solving an MDP consists of identifying a policy in a pre-specified policy space
Π that maximizes this objective. The problem is thus formalized as:

max
πPΠ

JMR
T_γ

pπq. (2.27)

It is known from [Puterman, 2014, Theorem 5.5.3] that there exists an optimal policy
π‹ P Π Ď ΠD X ΠM that is deterministic and Markovian, such that:

π‹
P argmax

πPΠ
JMRpπq. (2.28)

This definition of optimality is relative to the initial state distribution µ, and is often
referred to as initial-state optimality. Stronger notions, such as uniform optimality,
require that the policy maximizes the value function for every state in S.

2.1.5 Exact Solution Methods

In this context, we briefly review various approaches for deriving the optimal policy, as-
suming full knowledge of the MDP. The core idea is to first compute the optimal value
function and then derive the corresponding optimal policy. While complete knowledge
of the environment’s dynamics is rarely available in practical applications, these algo-
rithms are of fundamental importance, as they form the basis for many value-based RL
methods discussed later.

Dynamic Programming

Dynamic Programming [DP, Bellman, 1952] can be integrated into sample-based meth-
ods and is also applicable to MDPs with infinite state or action spaces. The first DP
algorithm we consider is policy iteration [Sutton, 2018], which alternates between two
phases: policy evaluation and policy improvement. The policy evaluation phase com-
putes the value function corresponding to the current policy, which is initially chosen
at random. Notably, this step relies on the fact that the value function of a policy is the
unique fixed point of the Bellman Expectation Operator of Eq. (2.20). The policy im-
provement phase, based on the policy improvement theorem [Sutton, 2018], guarantees
an improvement by greedifying the policy with respect to the current value function.
The pseudocode for the algorithm is provided below.
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2.1. A Primer on Sequential Decision-Making

Algorithm 1: Policy Iteration (PI)

Input: Randomly initialized policy π0
for k “ 0, . . . , until convergence do

Randomly initialize V0psq, @s P S
for j “ 0, . . . , until convergence do

Apply operator Vj`1psq “ pT πkVjqpsq, @s P S
end for
Compute Qπkps, aq “ Rps, aq ` γ Es1„P p¨|s,aqrVjps

1qs, @ps, aq P S ˆ A
Compute the greedy policy πk`1psq P argmaxaPAQπkps, aq, @s P S

end for
Output: Optimal policy πi

It is important to note that the inner-loop policy evaluation step can be computa-
tionally expensive. The value iteration algorithm [Sutton, 2018] addresses this issue
by performing only a single application of the Bellman Expectation Operator before
greedifying the result. This method relies on the Bellman Optimality Equation (2.22)
and its associated operator. In particular, repeatedly applying the Bellman Optimality
Operator converges to the optimal value function. Hence, value iteration iteratively ap-
plies this operator to a randomly initialized function to obtain the optimal value. The
pseudocode is provided below.

Algorithm 2: Value Iteration (VI)

Input: Function f0 : S Ñ R with random initialization.
for k “ 0, . . . , until convergence do

Apply operator fk`1psq “ pT ˚fkqpsq, @s P S
end for
Compute π˚psq P argmaxaPA

␣

Rps, aq ` γ Es1„P p¨|s,aqrfkps1qs
(

Output: Optimal policy π˚

Linear Programming

The solution of finite MDPs can also be formulated as a linear program [LP, Wang
et al., 2007]. In the discounted case (γ ă 1), the primal LP problem is:

min
vPR|S|

ÿ

sPS
ν0psqvpsq

subject to vpsq ě Rps, aq ` γ
ÿ

s1PS
Pps1

| s, aqvps1
q, @s P S, @a P A,

ν0 P ∆S .

This results in a LP with |S| variables and |S||A| constraints. The solution of the
primal yields the optimal value function V ˚, from which an optimal policy can be
recovered by selecting the greedy action with respect to V ˚. Applying Lagrangian
duality, the dual LP is formulated as in Wang et al. [2007]:
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Chapter 2. Reinforcement Learning

max
νP∆SˆA

ÿ

sPS

ÿ

aPA
νps, aqRps, aq

subject to
ÿ

aPA
νps1, aq “ p1 ´ γqµps1

q ` γ
ÿ

sPS

ÿ

aPA
νps, aqPps1

| s, aq, @s1
P S.

The dual formulation involves |S||A| variables and |S| constraints (excluding non-
negativity constraints), and is generally more practical to solve. The optimal solution
ν˚ corresponds to the γ-discounted stationary state-action distribution compatible with
the initial state distribution µ and an optimal policy. An optimal policy can then be
recovered as:

π˚
pa|sq “

ν˚ps, aq
ř

a1PA ν
˚ps, a1q

. (2.29)

2.2 Reinforcement Learning Algorithms

All the methods for solving MDPs that we have previously discussed crucially rely on
full knowledge of the transition model P. However, in many relevant decision-making
problems, the transition model is either unknown, such as the laws governing human
behavior, or too complex to be explicitly represented, as in many robotics applications.
This is where RL becomes essential, as it enables the agent to learn an (approximately)
optimal policy through mere (sampled) interactions with the MDP.

In the following sections, we briefly present some of the most common RL algo-
rithms, following a widely adopted taxonomy: critic-only, actor-based, and actor-
critic methods. Critic-only (or value-based) methods aim to learn an optimal value
function and subsequently derive the optimal policy via greedification [Watkins and
Dayan, 1992, Rummery and Niranjan, 1994, Munos, 2005, Scherrer, 2014]. Actor-only
(or policy-based) methods, by contrast, directly optimize the policy without explic-
itly modeling the value function [Williams, 1992, Baxter and Bartlett, 2001]. Finally,
actor-critic approaches [Konda and Tsitsiklis, 1999, Lillicrap et al., 2016] combine the
previous two, maintaining both an explicit policy (the actor) and a value function cor-
responding to the current policy (the critic). For a more comprehensive treatment, we
refer the reader to standard textbooks [Sutton, 2018, Szepesvári, 2022].

2.2.1 Critic-Only Methods

In general, critic-only methods fall under the umbrella of approximate dynamic pro-
gramming, a family of algorithms that blend exact DP solutions with function approxi-
mation techniques. The idea is to represent value functions within a functional space F ,
enabling the algorithm to handle large or even infinite state spaces effectively, provided
that F is suitably chosen. The objective is to find a function f P F that accurately
approximates the optimal value or action-value function.

The most well-known critic-only method is Q-learning [Watkins and Dayan, 1992],
which learns the optimal action-value function through sampled interactions with the
MDP. The core of the algorithm is the Q-learning update, which uses the most recent
interaction pst, at, st`1q to refine the estimate of the state-action value function Qt. The
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learning rate α P R` controls the trade-off between retaining previous estimates and
incorporating new information. Crucially, under proper learning-rate control and mild
assumptions on the behavioral policy β, the algorithm is guaranteed to asymptotically
converge to the optimal value function Q˚, and consequently to the optimal policy
π˚. Importantly, at any given time, the estimate Qt may not correspond to the value
function of any actual policy, as the update uses a maximization over possible actions.
This makes the algorithm off-policy: the data is generated by a behavioral policy β that
can differ from the policy implicitly induced by Qt. The algorithm is outlined below.

Algorithm 3: Q-learning

Input: Learning rate α, behavioral policy β
Initialize Q0ps, aq for all ps, aq P S ˆ A (e.g., randomly)
Sample initial state s0 „ µ
for t “ 0, . . . until convergence do

Sample action at „ βp¨|stq
Collect reward Rpst, atq and next state st`1 „ P p¨|st, atq
Q-value update:

Qt`1pst, atq “ p1 ´ αqQtpst, atq ` α
´

Rpst, atq ` γmax
a1PA

Qtpst`1, a
1
q

¯

(Optional) Update behavioral policy β
end for
Greedification step:

π˚
psq P argmax

aPA
Qtps, aq, @s P S

Output: Optimal policy π˚

When the MDP has an infinite number of states (as in continuous control tasks),
storing a table of SA Q-values becomes impractical. A common solution is to use a
function approximator for the Q-function, typically a parametric differentiable function
Qϕ defined by a parameter vector ϕ P Rd. That is, the functional space becomes
F “ tQϕ : ϕ P Rdu. In this setting, the Q-learning update is replaced by:

ϕt`1 Ð ϕt ` α
´

Rpst, atq ` γmax
aPA

Qϕpst`1, aq ´ Qϕpst, atq
¯

∇ϕQϕpst, atq.

This rule can be interpreted as a stochastic gradient descent step minimizing the
mean squared error. However, convergence guarantees are limited: they hold un-
der restrictive assumptions, such as linear function approximators [Melo and Ribeiro,
2007], although these were relaxed more recently [Carvalho et al., 2020]. For over-
parameterized ReLU neural networks, finite-sample convergence bounds were also es-
tablished [Xu and Gu, 2020]. Despite limited theoretical guarantees, the combination of
Q-learning with deep neural networks, known as Deep Q-Networks (DQNs), has shown
remarkable empirical success [Mnih et al., 2015]. This coupling, however, introduces
several challenges that require a number of modifications to stabilize and enhance the
learning process.
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Chapter 2. Reinforcement Learning

A key issue is that samples in RL are not i.i.d., since consecutive states are tem-
porally correlated. To mitigate this, DQNs use experience replay, where observed
transitions are stored in a replay buffer. At each update step, transitions are sampled
(uniformly) from this buffer to approximate the gradient of the squared TD error. In
practice, the target is treated as fixed to avoid differentiating through the max operator:

fpϕq :“
1

n

ÿ

iPrns

´

Ri ` γmax
aPA

Qϕps1
i, aq ´ Qϕpsi, aiq

¯2

,

∇ϕfpϕq “ ´
1

n

ÿ

iPrns

´

Ri ` γmax
aPA

Qϕps1
i, aq ´ Qϕpsi, aiq

¯

∇ϕQϕpsi, aiq.

The replay buffer is typically a finite-size FIFO queue. Once full, older transitions
are replaced by newly collected samples obtained from an exploration-driven policy. A
common choice is ϵ-greedy exploration, with ϵ decaying over time, though alternatives
like Boltzmann exploration are also used.

To further stabilize learning, DQNs often employ a target network that is updated
more slowly than the main Q-network. This prevents the learning targets from shifting
too rapidly. Moreover, double Q-learning [Hasselt, 2010] is often used to reduce over-
estimation bias, leading to the Double DQN algorithm [Van Hasselt et al., 2016]. Addi-
tional improvements include prioritized experience replay [Schaul et al., 2015], where
transitions are sampled with priority based on their mean squared error, and dueling ar-
chitectures [Wang et al., 2016], which separately estimate state values and advantages.
A comprehensive empirical study of these enhancements and their combinations was
conducted in Hessel et al. [2018].

2.2.2 Actor-Only Methods

The approaches discussed thus far were value-based, meaning they rely on an inter-
mediate step involving the estimation of a value function, from which a greedy policy
is subsequently extracted. However, this intermediate step often becomes impractical
when the action space is large or continuous, as the greedification step can be computa-
tionally expensive or even intractable. In such cases, Policy Optimization (PO) methods
become particularly relevant. These methods explicitly represent the policy in an appro-
priate space Π. Importantly, this explicit policy representation enables the imposition
of structural or behavioral constraints, which often proves beneficial in practice.

A wide range of policy optimization strategies have been proposed in the litera-
ture, including model-based techniques [Ng and Jordan, 2013, Ko and Fox, 2009],
expectation-maximization algorithms [Kober and Peters, 2008], variational inference
approaches [Neumann, 2011], and evolutionary computation methods [Heidrich-Meisner
and Igel, 2009]. Typically, PO methods adopt a trajectory-based formulation of the
objective. When the state and action spaces of the MDP are large or continuous, an
efficient non-parametric representation of the policy π is generally not feasible. In such
cases, the policy space is modeled via a set of parametric policies ΠΘ “ tπθ : θ P Θ Ď

Rqu. The policy optimization problem then becomes

max
πθPΠΘ

JMRpπθq, (2.30)
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2.2. Reinforcement Learning Algorithms

where the objective is directly optimized over the policy parameter space Θ. This is
often approached using first-order methods such as gradient ascent. In fact, it is rela-
tively straightforward to derive the gradient of the objective JMRpπθq with respect to the
policy parameters [Kober and Peters, 2008], yielding the well-known Policy Gradient
Theorem [Sutton et al., 1999]:

∇θJMRpπθq “ E
sa„pπθ

»

–

ÿ

tPrT s

∇θ log πθpat|stqQ
πθpst, atq

fi

fl . (2.31)

Based on this key result, policy optimization can be performed through gradient
ascent using (Monte Carlo) estimates of Eq. (2.31). The resulting algorithm is known
as G(PO)MDP [Baxter and Bartlett, 2001], and we report its pseudo-code below.

Due to its ability to handle continuous action spaces and its conceptual simplicity,
this algorithmic blueprint, more generally referred to as Policy Gradient (PG), has seen
widespread adoption. However, a notable inefficiency of the base PG algorithm is that
it discards collected experience after a single update. As a result, new samples must be
collected afresh for each update, making PG methods inherently online. This is clearly
suboptimal, as the same batch of samples could, in principle, be reused to perform
multiple updates.

Algorithm 4: G(PO)MDP

Input: learning rate α, parameter space Θ
Initialize θ0 P Θ (randomly)
for i “ 0, . . . , until convergence do

Collect tsaju
N
j“1, i.e., a batch of trajectories, using policy πθi

Estimate the policy gradient:

p∇θiJMR
pπθiq “

ÿ

jPrNs

ÿ

tPrT s

∇θi log πθipa
pjq

t |s
pjq

t q

¨

˝

ÿ

kPrt:T s

Rps
pjq

k , a
pjq

k q

˛

‚

Update the parameters:

θi`1 “ θi ` αp∇θiJMR
pπθiq

end for
Output: πθi

2.2.3 Actor-Critic Methods

The Actor-Critic framework combines value-based and policy-based methods by ap-
plying a form of generalised policy iteration over two main components: the actor,
which is a parameterized policy πθpa|sq, and the critic, which is a parameterized es-
timator of a value function. The critic can take the form of an action-value function
Qϕps, aq, a state-value function Vϕpsq, or an advantage function Aϕps, aq. These two
components are trained in tandem, either synchronously or asynchronously. Despite its
conceptual simplicity, this architecture has proven highly effective in practice, partic-
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Chapter 2. Reinforcement Learning

ularly when combined with deep function approximation, and Actor-Critic algorithms
have emerged as some of the most widely used methods in reinforcement learning.

The original Actor-Critic architecture dates back to Sutton et al. [1999], who pro-
posed leveraging the Policy Gradient Theorem (2.31) to design a learnable critic. The
key insight was that the true action-value function Qπθps, aq can be replaced by a
learned approximation Qϕps, aq without introducing bias, provided the approximation
satisfies the compatibility condition. This framework is known as compatible function
approximation, and it ensures that the resulting gradient estimate remains unbiased.
The conditions are: the critic Qϕps, aq must be linear in the score function, i.e., the gra-
dient of the log-policy: Qϕps, aq “ ∇θ log πθpa|sqJw, where w is a vector of weights;
the weights w must minimise the mean squared error between the true advantage func-
tion and its linear approximation

w˚
“ argmin

w
E

s,a„dπθ

”

`

Aπ
ps, aq ´ ∇θ log πθpa|sqJw

˘2
ı

. (2.32)

When both conditions are satisfied, the approximated value function Qϕps, aq can be
safely used in the policy gradient:

∇θJpθq “ E
s,a„dπθ ,πθ

r∇θ log πθpa|sqQϕps, aqs , (2.33)

which forms the theoretical foundation of the Actor-Critic architecture and enables the
construction of stable and efficient policy gradient algorithms.

Building upon these foundations, Peters and Schaal [2008a] introduced the use of
natural gradients, initially proposed by Amari [1998]. Instead of performing standard
gradient ascent, natural policy gradient methods adjust the update direction by the in-
verse of the Fisher information matrix:

∇̃θJpθq “ F´1∇θJpθq, (2.34)

where
F “ E

s,a„dπθ

“

∇θ log πθpa|sq∇θ log πθpa|sqJ
‰

(2.35)

is the Fisher information matrix. Natural gradients account for the geometry of the pol-
icy space and are empirically found to yield more stable and sample-efficient updates.
This gave rise to the family of Natural Actor-Critic algorithms.

Later, Schulman et al. [2015] employed a parametric policy and an estimator of
the advantage to build the Trust Region Policy Optimization (TRPO) algorithm, which
improves policies with guaranteed monotonic improvement in expected return. TRPO
optimizes a surrogate objective while constraining the KL divergence between the new
and old policies:

max
θ

E
s,a„dπold

„

πθpa|sq

πoldpa|sq
Âπoldps, aq

ȷ

s.t. E
s„dπold

rDKL pπoldp¨|sq }πθp¨|sqqs ď δ,

where Âπoldps, aq is an estimator of the advantage under the old policy and δ is a hyper-
parameter controlling the size of the policy update.
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2.2. Reinforcement Learning Algorithms

Although TRPO enjoys strong theoretical guarantees and strong empirical perfor-
mance, its implementation can be complex due to its reliance on second-order optimiza-
tion. To simplify this, Schulman et al. [2017] introduced Proximal Policy Optimization
(PPO), which approximates TRPO’s trust region with a clipped surrogate objective:

LCLIP
pθq “ E

t

”

min
´

rtpθqÂt, clipprtpθq, 1 ´ ϵ, 1 ` ϵqÂt

¯ı

, (2.36)

where rtpθq “
πθpat|stq

πoldpat|stq
is the probability ratio, Ât is the estimated advantage, and ϵ is a

small hyperparameter (e.g., 0.1-0.3). PPO’s simplicity and empirical performance have
made it a standard in deep RL.

In parallel, Silver et al. [2014] developed the Deterministic Policy Gradient (DPG)
Theorem, which enables direct optimization of deterministic policies µθpsq. The deter-
ministic policy gradient is:

∇θJpµθq “ E
s„dµθ

”

∇θµθpsq∇aQ
µθps, aq

ˇ

ˇ

a“µθpsq

ı

. (2.37)

This formulation enables off-policy learning using a replay buffer. When extended
with deep networks, this leads to the Deep Deterministic Policy Gradient (DDPG) al-
gorithm [Lillicrap et al., 2016], effective in high-dimensional continuous control.

Another significant development was Mnih et al. [2016]’s introduction of the Asyn-
chronous Advantage Actor-Critic (A3C) algorithm. Here, the policy gradient uses the
advantage function in place of the full Q-value:

∇θJpθq “ E
s,a„dπθ

r∇θ log πθpa|sqAπ
ps, aqs . (2.38)

The advantage is estimated via a value function baseline V πpsq, trained using temporal-
difference learning. A3C employs multiple parallel agents to stabilise training and
improve data throughput.

Finally, Haarnoja et al. [2018b] introduced the Soft Actor-Critic (SAC) algorithm,
which augments the reward with an entropy term to encourage exploration. The objec-
tive is:

Jpπq “ E
pst,atq„dπθ

rrpst, atq ` αHpπp¨|stqqs , (2.39)

where α is a temperature parameter that balances reward and entropy. The resulting
policy gradient is:

∇θJpθq “ E
st,at„dπθ

r∇θ log πθpat|stq pQπ
pst, atq ´ α log πθpat|stqqs . (2.40)

SAC achieves state-of-the-art performance on continuous control benchmarks and is
noted for its robustness and sample efficiency.
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Chapter 2. Reinforcement Learning

2.3 The Frontiers of Reinforcement Learning

Throughout the previous sections, we have surveyed the core methodologies used to
address MDPs. While these models offer a solid foundation for sequential decision-
making, they are often too restrictive to capture the richness and complexity of real-
world environments. This section explores some of the most promising and actively
researched extensions of RL that move beyond the standard MDP framework. We fo-
cus in particular on models designed to operate under partial observability, where the
agent receives only indirect or noisy information about the underlying state, as well
as those that account for interactions between multiple decision-makers. Additionally,
we briefly examine a broader class of decision-making problems in which the objec-
tive function is no longer required to be linear in the state distribution, relaxing a key
structural assumption of traditional MDPs.

2.3.1 Markov Processes with Partial Observability

MDPs assume that the agent has full access to the underlying state of the environment.
In practice, however, the agent may only receive partial, noisy, or indirect observa-
tions. A more general framework is required to handle such scenarios. Consider, for
instance, an autonomous robot deployed in rescue operations. The robot operates in an
unknown terrain with the goal of locating and assisting a wounded person. It cannot
access its true position or the location of the human but instead perceives the envi-
ronment through noisy sensors and cameras. In this context, naively maximizing the
performance related to the observations is unlikely to be helpful, as it is usually defined
over the true conditions of the system.

Such partially observable settings are indeed common in applications including
robotics [Cassandra et al., 1996, Akkaya et al., 2019], resource allocation [Bower and
Gilbert, 2005], medical diagnosis [Hauskrecht and Fraser, 2000], recommendation sys-
tems [Li et al., 2010], and business management [De Brito and Van Der Laan, 2009].
These are typically modeled using the framework of Partially Observable Markov De-
cision Processes [POMDPs, Åström, 1965], in which observations are stochastic func-
tions of the hidden underlying state.

Interaction Protocol

A finite-horizon POMDP is defined as the tuple MR :“ pS,A,O,P,O, R, T, µq, where
S is the state space with cardinality S “ |S|, A is the action space with A “ |A|,
and O is the observation space with O “ |O|. The transition kernel is given by P :
S ˆ A Ñ ∆S , with Pps1 | s, aq representing the probability of transitioning to s1 from
s after taking action a. The observation function O : S Ñ ∆O defines the likelihood
Opo | sq of receiving observation owhen in state s. Rewards are governed by a function
R : S ˆ A Ñ R. The episode horizon is a finite integer T ă 8, and the initial state
distribution is given by µ P ∆S .

At the beginning of an episode, a state s0 is drawn from the distribution µ. At
each timestep t ă T , the agent receives an observation ot drawn from Op¨ | stq and
selects an action at. The environment transitions to a new state st`1 drawn from
Pp¨ | st, atq. At the final time step T ´ 1, an observation oT´1 is sampled and the
episode ends. Thus, each trajectory yields sequences of states s “ ps0, . . . , sT´1q,
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2.3. The Frontiers of Reinforcement Learning

actions a “ pa0, . . . , aT´1q, state-action pairs sa “ pst, atqtPrT s, and observations
o “ po0, . . . , oT´1q.

Beliefs, Policies, and Distributions

Since the agent cannot directly observe the true states, it often reasons over a be-
lief [Kaelbling et al., 1998], which is a probability distribution over the possible states
given the sequence of previous observations and actions. We denote this belief as
b P B Ď ∆S . Typically, the initial belief is uniform, that is, b1 “ UpSq. Beliefs
are updated recursively via Bayes’ rule. Given an action a and subsequent observation
o at time t, the updated belief is computed as

baot psq “
Opo | sq

ř

s1PS Pps | s1, aqbt´1ps
1q

ř

s̃PS Opo | s̃q
ř

s2PS Pps̃ | s2, aqbt´1ps2q
. (2.41)

This expression defines a belief transition operator T ao : B Ñ B such that the next
belief b1 “ T aopbq. In this way, beliefs evolve through a trajectory b “ pb0, . . . , bT´1q.

Let i P I denote the information available to the agent at each time step. In
POMDPs, a policy π : I Ñ ∆A defines the action selection strategy, where πpa | iq
is the probability of selecting action a given information i. Depending on the mod-
eling choice, the information space I can correspond to a single observation from O,
a sequence of past observations from TO, or a trajectory of beliefs from TB. This de-
sign allows the definition of stationary Markov policies with respect to the information
space, even when the process is non-Markovian in the original state or observation
spaces.

A policy π induces a marginal distribution over states, denoted dπS P ∆S , which is
defined as dπSpsq “ 1

T

ř

tPrT s
Prpst “ sq. Similarly, it induces a marginal distribution

over observations dπOpoq “ 1
T

ř

tPrT s
Prpot “ oq. These two distributions are linked by

the observation function via the relationship

dπOpoq “
ÿ

sPS
dπSpsqOpo | sq. (2.42)

Let s,o, a represent random vectors corresponding to state, observation, and action
sequences of length T . The full trajectory of states is distributed as s „ pπS P ∆ST ,
where pπSpsq “

ś

tPrT s
Prpst “ srtsq, and likewise the trajectory of observations is

distributed as o „ pπO P ∆OT with pπOpoq “
ś

tPrT s
Prpot “ ortsq.

Based on a trajectory ps,oq, one can define empirical distributions over states and
observations. The empirical state distribution is dSps | sq “ 1

T

ř

tPrT s
1psrts “ sq,

and the empirical observation distribution is dOpo | oq “ 1
T

ř

tPrT s
1ports “ oq. The

probability distributions pπS and pπO can also be used to denote the distributions over
these empirical marginals. When averaging over n episodes, the empirical distributions
become dn,Spsq “ 1

n

ř

kPrns
dk,Spsq, and the corresponding probability of sampling such

empirical distributions under policy π is denoted by pπn,S . Analogous definitions hold
for dn,O and pπn,O.

The full trajectory h includes states, actions, observations, and beliefs, and is defined
as h “ s ‘ a ‘ o ‘ b. The probability of observing h under policy π is given by the
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expression

pπphq “ µps0q
ź

tPrT s

Opot | stqπpat | itqPpst`1 | st, atqT otatpbt`1 | btq. (2.43)

Finally, the belief framework also allows us to define a trajectory of believed states,
denoted s̃ “ ps̃0, . . . , s̃T´1q, where each s̃t is drawn from the belief bt. These believed
trajectories are distributed according to

pps̃ | bq “
ź

tPrT s

btps̃tq. (2.44)

Solving Markov Processes under Partial Observability

In a POMDP, the agent’s observations do not uniquely determine the underlying state
of the environment. Since both rewards and transitions still depend on the true latent
state, the observation alone does not constitute a Markovian signal. This fundamen-
tal non-Markovianity implies that mapping observations directly to actions is generally
insufficient for optimal decision-making. Instead, solving POMDPs typically requires
the agent to retain memory, reason about its belief over the possible states, and actively
explore the environment to reduce uncertainty. These challenges make learning in par-
tially observable settings considerably more complex. Despite these difficulties, mod-
ern RL systems have achieved notable successes in such domains, including games like
Poker [Brown and Sandholm, 2019] and StarCraft [Vinyals et al., 2019]. Nonetheless,
theoretical results confirm that learning and planning in POMDPs is statistically and
computationally intractable in the general case, among others [Papadimitriou and Tsit-
siklis, 1987, Mundhenk et al., 2000, Vlassis et al., 2012, Mossel and Roch, 2005, Krish-
namurthy et al., 2016]. These hardness results, however, reflect worst-case scenarios.
Recent work has identified rich subclasses of POMDPs, such as latent MDPs [Kwon
et al., 2021b,a] and weakly revealing POMDPs [Liu et al., 2022a], where efficient learn-
ing algorithms are indeed possible and practically relevant.

A direct consequence of the non-Markovian nature of observations is that the agent
would, in principle, need to remember the full history of actions and observations to
make optimal decisions [Fact 3, Singh et al., 1994b]. However, maintaining such a
growing history becomes impractical, especially over long time horizons. One com-
mon strategy to address this is to reframe the POMDP as a belief-state MDP.4 In this
formulation, the agent encodes all available information about the past into a belief
state, a probability distribution over the latent states, which restores the Markov prop-
erty and enables the use of standard RL algorithms. The resulting policy, denoted π˚pbq,
maps beliefs to actions and can be evaluated through a belief-dependent value function
V π : ∆S Ñ R, defined as the expected discounted return under policy π starting from
belief b:

V π
pbq “ E

π

»

–

ÿ

tPrTγ s

γtRpbt, πp¨ | btqq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

b0 “ b

fi

fl , (2.45)

4The interested reader can refer to Appendix B.1 for a more detailed characterization.
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where the expected reward at time t is computed as Rpbt, πp¨ | btqq “
ř

sPS, aPA πpa |

btqRps, aqbtpsq. The optimal policy π˚ is the one that maximizes V π across all be-
liefs. Its value is given by the optimal value function V ˚, which satisfies the Bellman
optimality equation [Spaan, 2012]:

V ˚
“ T ˚

POV
˚, (2.46)

where the Bellman backup operator T ˚
PO applied to a generic function f : ∆S Ñ R is

defined as:

pT ˚
POqfpbq “ max

aPA

«

Rpb, aq ` γ
ÿ

oPO
ppo | b, aqfpbaoq

ff

, (2.47)

with observation probabilities given by ppo | b, aq “
ř

s1PS Opo | s1q
ř

sPS Pps1 |

s, aqbpsq. Interestingly, although the belief space is continuous, the optimal value func-
tion over beliefs is piecewise linear and convex [Spaan, 2012], a property that has been
heavily exploited in the design of efficient solution methods, to name a few [Sondik,
1978, Cassandra et al., 1994, 1997, Zhang, 2001, 2010].

To mitigate worst-case complexity, numerous approximate methods have been de-
veloped. Many of these approaches focus on sampling or approximating the belief
space to make planning tractable [Pineau et al., 2003, Spaan and Vlassis, 2005, Shani
et al., 2007, Kurniawati et al., 2008, Poupart et al., 2011, Smith and Simmons, 2012].
However, constructing a belief state typically requires full knowledge of the environ-
ment’s dynamics, which is not always available in practice. When the model is un-
known, alternatives include learning memoryless policies that act directly on obser-
vations [Littman, 1994b, Jaakkola et al., 1994, Loch and Singh, 1998, Williams and
Singh, 1999, Li et al., 2011], or using finite-state controllers that encode a compact
internal memory structure [McCallum, 1993, Whitehead and Lin, 1995, Meuleau et al.,
1999, Amato et al., 2010].

In recent years, deep RL techniques have enabled significant progress in handling
partial observability by leveraging recurrent or memory-based architectures. A wide
range of methods have incorporated neural networks to model value functions and poli-
cies, yielding strong empirical results across diverse tasks, among others [Bakker, 2002,
Wierstra et al., 2007,?, Heess et al., 2015, Ha and Schmidhuber, 2018, Baisero and
Amato, 2018, Igl et al., 2018, Zhang et al., 2019, Hafner et al., 2019]. While these
methods are highly performant, they lack theoretical guarantees. An important step
toward bridging this gap has been the recent introduction of approximate information
states [Subramanian et al., 2022], which offer a formal approximation framework for
belief tracking.

A distinct line of research avoids belief modeling altogether by using Predictive
State Representations [PSR, Littman et al., 2002, Singh et al., 2003], which encode
state using statistics over future observable sequences. PSRs provide a compelling al-
ternative since they rely exclusively on observable quantities, and have been effectively
used across various RL settings [Rosencrantz et al., 2004, Boots et al., 2011, Kulesza
et al., 2015, Jiang et al., 2016].
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2.3.2 Markov Processes with Multiple Agents

MDPs model scenarios involving a single agent interacting with an environment. How-
ever, in many real-world applications, multiple agents may interact with the same en-
vironment, often influencing one another. Consider, for instance, multiple robots being
deployed in a collapsed building to carry out a rescue mission. Their objective is to
explore a large area to find and save injured individuals. In some cases, effective res-
cue operations may require coordination, such as helping each other access otherwise
unreachable areas. Requiring every robot to cover the entire area is clearly inefficient
and unnecessary. On the other hand, if each robot acts purely independently, without
any incentive to cooperate, opportunities for coordination may be lost, especially when
cooperation comes at a cost. These kinds of scenarios are typically modeled using
Markov Games [MGs, Littman, 1994a], where multiple agents interact with a shared
environment.

Interaction Protocol

A finite-horizon MG is defined as MR :“ pN ,S,A,P, R, µ, T q, where N is the set
of agents; S “ ˆiPr|N |sSi is the joint state space; A “ ˆiPr|N |sAi is the joint action
space, both S and A being discrete and finite; µ P ∆S is the initial state distribution;
P P ∆S

SˆA is the transition model; R “ tRiuiPr|N |s is the collection of reward functions
Ri : S ˆ A Ñ R; and T ă 8 is the time horizon.

At the beginning of each episode, the initial state s0 is drawn from µ. Upon observ-
ing s0, each agent i takes an action ai0 P Ai, resulting in a joint action a0 “ pai0qiPr|N |s.
The system transitions to s1 „ Pp¨|s0, a0q, and each agent receives a reward according
to Rips0, a0q. This process continues for t ă T .

Policies and Distributions

Each agent follows a policy, which may be either Markovian, πi P ∆Ai

S , or non-
Markovian, πi P ∆Ai

StˆAt . We denote the space of valid per-agent policies by Πi and
the space of joint policies by Π. Policies are said to be decentralized-information if
conditioned only on an agent’s local information (e.g., Si or St

i ˆ At
i), and centralized-

information if conditioned on the full state or joint histories. The joint policy is denoted
by π “ pπiqiPr|N |s P ∆A

S .
Let S and Si denote the random variables corresponding to the joint state and agent-

i’s state, respectively. Then, under policy π, we define the marginal state distributions
as

dπpsq “
1

T

ÿ

tPrT s

Prpst “ s|π, µq, (2.48)

dπi psiq “
1

T

ÿ

tPrT s

Prpst,i “ si|π, µq. (2.49)

Solving Markov Processes with Multiple Agents

As in the single-agent case, we can define value functions for any joint policy π com-
posed of centralized per-agent policies. The value function and joint Q-function for
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agent i at time t are defined as

V π
i,tpsq :“ E

π

»

–

ÿ

t1Prt:T s

Ri
pst1 , at1q | st “ s

fi

fl (2.50)

Qπ
i,tps, aq :“ E

π

»

–

ÿ

t1Prt:T s

Ri
pst1 , at1q | pst, atq “ ps, aq

fi

fl . (2.51)

We further define the marginal Q-function for agent i as

Qπ
i,tps, aiq :“ E

π

»

–

ÿ

t1Prt:T s

Ri
pst1 , at1q | pst, ai,tq “ ps, aiq

fi

fl , (2.52)

which marginalizes over the actions of all other agents under π.
The Bellman operator for the marginal Q-function is

rT π
i,tf sps, aiq :“ E

a´i„π´ip¨|sq,
s1„P p¨|s,aq,
a1
i„πip¨|s1q

“

Ri
ps, aq ` fps1, a1

iq
‰

, (2.53)

for centralized Markov policies πi : S Ñ ∆Ai
and π´i : S Ñ ∆A´i

, possibly cor-
related. We define a best-response policy for agent i as π:pπ´iq : S Ñ ∆Ai

such
that

V
πi,:pπ´iqˆπ´i

i,0 psq “ sup
π̄i

V π̄iˆπ´i

i,0 psq, @s P S, (2.54)

and we denote

V
:,π´i

i psq :“ V
πi,:pπ´iqˆπ´i

i psq, V
:,π´i

i pµq :“ E
s„µ

”

V
:,π´i

i psq
ı

. (2.55)

We are now ready to define the following solution concepts for Markov Games with
centralized policies:

Definition 2.3.1 ((Markov) Equilibria). For ϵ ą 0, a (Markov) policy 5 π P ∆pAqS is a
(Markov) ϵ-Approximate Coarse Correlated Equilibrium (CCE) if

max
iPr|N |s

!

V
:,π´i

i pµq ´ V π
i pµq

)

ď ϵ. (2.56)

It is a (Markov) Coarse Correlated Equilibrium if ϵ “ 0. A product policy π P ∆pAqS

satisfying the same condition is called a (ϵ-Approximate) Nash Equilibrium (NE).

Numerous works have studied the computation and learning of such equilibria using
centralized policies. Nash Equilibria have mostly been explored in games with favor-
able reward structure: identical, interest games (or more generally, potential games)
with Rip¨q “ Rjp¨q for all i, j P r|N |s [Macua et al., 2018, Chen et al., 2022, Ding
et al., 2022, Zhang et al., 2022b, Maheshwari et al., 2022, Fox et al., 2022, Leonar-
dos et al., 2022, Alatur et al., 2023, Aydin and Eksin, 2023]; and two-player zero-sum

5Potentially a correlated policy.
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MGs with R1p¨q “ ´R2p¨q [Perolat et al., 2015, Daskalakis et al., 2020, Zhang et al.,
2020b, Sayin et al., 2021, Wei et al., 2021, Huang et al., 2022, Cui and Du, 2022,
Zeng et al., 2022, Pattathil et al., 2023, Yang and Ma, 2023, Arslantas et al., 2023, Cen
et al., 2023, Cai et al., 2023, Chen et al., 2023], though with notable exceptions [Gi-
annou et al., 2022, Kalogiannis and Panageas, 2023, Kalogiannis et al., 2023, Qin and
Etesami, 2023, Sayin, 2023, Park et al., 2023]. In general Markov Games, computing
Nash equilibria is intractable, and focus has shifted to coarse correlated equilibria [Jin
et al., 2021a, Erez et al., 2023, Liu et al., 2022b, Daskalakis et al., 2023, Zhang et al.,
2022a, Wang et al., 2023, Foster et al., 2023].

Just as with POMDPs, certain structured MGs permit more tractable solutions. For
instance, polymatrix MGs with separable interactions allow for efficiently computable
Nash equilibria [Kalogiannis and Panageas, 2023, Park et al., 2023], although stationary
NE computation remains PPAD-hard [Daskalakis et al., 2023, Jin et al., 2023]. Station-
arity is desirable in large-scale settings due to memory efficiency, particularly when
leveraging deep neural policies. This aligns with the growing interest in networked
MGs in MARL [Zhang et al., 2018, Chu et al., 2020, Zamboni et al., 2025a].

Gradient-based approaches have also received considerable attention. While pol-
icy gradient methods may fail to converge to general NEs even in simple classes of
games [Vlatakis-Gkaragkounis et al., 2020], certain special cases such as strict equilib-
ria have been shown to be attractors of the gradient dynamics [Giannou et al., 2022],
particularly in adversarial team MGs [Kalogiannis et al., 2023], which generalize both
zero-sum and potential games.

On the other hand, when considering decentralized policies, the literature is more
scattered. With additional structural assumptions like separable interactions, Networked
MGs [Lin et al., 2021, Qu et al., 2022, Zhou et al., 2023, Zhang et al., 2023, Jin et al.,
2024] offer promising convergence results, contingent on the informativeness of the
states available to each agent. These can be viewed as a subclass of Partially Ob-
servable MGs, which inherit the computational challenges of POMDPs. Even in the
identical-interest case, known as Decentralized POMDPs, hardness results are well es-
tablished [Nair et al., 2003, Bernstein et al., 2005, Oliehoek et al., 2008, Szer et al.,
2012, Dibangoye et al., Liu et al., 2017, Amato et al., 2019], with some positive results
under weakly-revealing structures [Liu et al., 2022b].

Nevertheless, a vast number of practical methods based on deep RL have been pro-
posed to address these challenges. Among recent developments, trust-region-based pol-
icy optimization methods have shown remarkable empirical success [Yu et al., 2022],
yet it remains an open question if the environments addressed in contemporary MARL
do offer the usual challenges of Decentralized POMDPs [Tessera et al., 2025]. We refer
to Albrecht et al. [2024] for a comprehensive review.

2.3.3 Markov Processes with Concave Utilities

As stated earlier, standard RL focuses on solving MDPs, where the utility is typically
expressed as a linear combination of scalar reward terms. This is referred to as the dual
formulation, in which the coefficients of this linear combination are given by the state
distribution induced by the agent’s policy [Puterman, 2014]:

max
πPΠ

´

R ¨ dπ
¯

“: J8pπq, (2.57)
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here, R P RS is the reward vector, and dπ is the state distribution induced by π.
However, not all relevant objectives can be captured through this linear represen-

tation [Abel et al., 2021]. Several works have extended the standard RL formulation
to address non-linear objectives of practical interest. These include imitation learn-
ing [Hussein et al., 2017, Osa et al., 2018], where the goal is to minimize the dis-
tance between the induced state distribution and the state distribution induced by expert
demonstrations [Abbeel and Ng, 2004, Ho and Ermon, 2016, Kostrikov et al., 2019, Lee
et al., 2020, Ghasemipour et al., 2020, Dadashi et al., 2020]; risk-averse RL [Garcıa and
Fernández, 2015], where the objective accounts for the tail behavior of the agent’s pol-
icy [Tamar and Mannor, 2013, Prashanth and Ghavamzadeh, 2013, Tamar et al., 2015,
Chow et al., 2017, Bisi et al., 2020, Zhang et al., 2021b]; pure exploration [Hazan et al.,
2019], where the aim is to maximize the entropy of the induced state distribution [Tar-
bouriech and Lazaric, 2019, Lee et al., 2020, Mutti and Restelli, 2020, Mutti et al.,
2021, Zhang et al., 2021a, Guo et al., 2021, Liu and Abbeel, 2021b, Seo et al., 2021,
Yarats et al., 2021, Mutti et al., 2022d,b]; diverse skill discovery [Gregor et al., 2017,
Eysenbach et al., 2018, Hansen et al., 2019, Sharma et al., 2019, Campos et al., 2020,
Liu and Abbeel, 2021a, He et al., 2022, Zahavy et al., 2022]; and constrained RL [Alt-
man, 1999, Achiam et al., 2017, Brantley et al., 2020, Miryoosefi et al., 2019, Qin et al.,
2021, Yu et al., 2021, Bai et al., 2022], among others.

Interaction Protocol

While these objectives may look very dissimilar at first glance, they can be viewed
as different instances of a more general model, called convex MDPs [cMDPs, Zhang
et al., 2020a, Zahavy et al., 2021, Geist et al., 2022]. A cMDP is defined as a tuple
MF :“ pS,A,P,F , pT _ γq, µq, where pS,A,P, pT _ γq, µq is a classical CMP and
F is a bounded concave utility function F : ∆S Ñ R with F ă 8,6 and is a function
of the state distribution dπ. The RL objective in cMDPs is then:

max
πPΠ

´

Fpdπq

¯

“: ζ8pπq. (2.58)

The non-linearity of the concave utility breaks the additive structure of standard
RL, invalidating classical Bellman equations. As a result, dynamic programming ap-
proaches become infeasible, requiring the development of novel methodologies. For-
tunately, the problem remains largely tractable: it admits a dual formulation similar to
standard RL [Puterman, 2014], and principled algorithms with sub-linear regret-only
slightly worse than in classical RL have been developed [Zhang et al., 2020a, Zahavy
et al., 2021].

Number of Trials Matters with Concave Utilities

Rather then focusing on how to solve the cMDP, we are first interested in the impli-
cations of the non-linearity of the objective on the intrinsic nature of the problem. In
particular, we will show that the number of trials matters when optimizing the objec-
tive (2.58), a point first outlined in Mutti et al. [2022a,b] that will be of central interest
in the subsequent sections.

6In practice, the function can be convex, concave, or even non-convex. The term "concave" is used to distinguish the objective
from the standard (linear) RL setting. We assume F is concave unless otherwise stated.
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In the standard RL setting, the objective J8pπq evaluates the expected sum of re-
wards collected over an infinite number of episodes under policy π, as it depends on
dπ “ Ed„pπ rds. We then refer to problem (2.57) as the infinite trials RL formulation.

However, in practice, we cannot draw infinitely many episodes for any given policy.
Instead, we collect a finite (and often small) batch dn „ pπn. This motivates a finite
trials RL formulation that better reflects what is optimized in practice:

max
πPΠ

´

E
dn„pπn

“

r ¨ dn
‰

¯

“: Jnpπq. (2.59)

One might wonder whether optimizing the finite trials objective (2.59) leads to dif-
ferent results than the infinite trials one (2.57). In the standard RL case, the two objec-
tives are in fact equivalent:

Jnpπq “ E
dn„pπn

“

R ¨ dn
‰

“ R ¨ E
dn„pπn

“

dn
‰

“ R ¨ dπ “ J8pπq, (2.60)

since R is constant and expectation is a linear operator. Hence, both formulations yield
the same optimal policies. This allows us to enjoy the computational tractability of the
infinite trials formulation while optimizing the objective used in practice. However, as
we will see, this equivalence does not hold in the convex RL setting.

The standard convex objective (2.58) has been introduced as ζ8pπq to denote the
infinite trials version of the convex RL objective. Analogously thought, we can define
a finite trials version of the convex RL objective:

max
πPΠ

´

E
dn„pπn

“

Fpdnq
‰

¯

“: ζnpπq. (2.61)

Comparing (2.58) and (2.61), we note that both involve expectations over sampled
state distributions. Specifically, we can write:

ζ8pπq “ Fpdπq “ Fp E
dn„pπn

rdnsq ď E
dn„pπn

rFpdnqs “ ζnpπq (2.62)

by Jensen’s inequality. Thus, the equality does not hold in general. A policy opti-
mized for infinite trials may be suboptimal when deployed under finite trials. The core
reason is that F is applied after averaging in Eq. (2.58), while in Eq. (2.61), it is applied
before. This subtle difference can lead to significant discrepancies in performance.

Despite this mismatch, most works continue to optimize (2.58), even when only a
finite number of episodes are available. It is therefore important to assess how much is
lost by approximating the finite trials objective with the infinite trials one. We begin by
introducing a regularity assumption on F :

Assumption 2.3.1 (Lipschitz). A function F : A Ñ R is Lipschitz-continuous with
constant L ă 8, or L-Lipschitz, if:

|Fpxq ´ Fpyq| ď L}x ´ y}1, @px, yq P A2 (2.63)

Mutti et al. [2022a] was then the first to characterize the approximation error by
means of an upper bound:
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Theorem 2.3.1 (Approximation Error [Mutti et al., 2022a]). Let n P N be the number of
trials, δ P p0, 1s a confidence level, π: P argmaxπPΠ ζnpπq, and π‹ P argmaxπPΠ ζ8pπq.
Then, with probability at least 1 ´ δ, it holds:

err :“
ˇ

ˇζnpπ:
q ´ ζnpπ‹

q
ˇ

ˇ ď 4LT

c

2S logp4T {δq

n
(2.64)

This result provides an instance-agnostic upper bound on the approximation error:
err “ OpLT

a

S{nq. As expected, the bound decreases at rate Op1{
?
nq, reflecting

the concentration of dn around its expectation as n increases [Weissman et al., 2003].
Consequently, using the infinite trials objective in place of the finite one can be harmful
in low-data regimes.

For example, when training a policy in simulation and deploying it in the real world-
often with just one episode (n “ 1), the observed performance may be significantly
worse than the predicted ζ8pπq, leading to unsafe or undesirable behaviors. In this
thesis, we will be particularly interested in the finite trials case, as this is the most
realistic in almost any real-world application. Due to this, we will focus on algorithmic
solutions able to address the finite trials objective directly.

Finally, note that although Theorem 2.3.1 gives an upper bound, it is not necessarily
tight for every instance. However, the bound is informative in many practical applica-
tions, as thoroughly analyzed in Mutti et al. [2022a].

Reward is enough with Infinite Trials

While finite trials objectives will be our main focus, it is still useful to understand the
properties of the infinite trials formulation and more specifically how to solve such
problems. Fortunately enough, the following general result holds:

Lemma 2.3.2 (Sufficiency of Markovian Policies [Puterman, 2014]). For any possi-
bly non-Markovian policy π P ΠNM, define a stationary Markov policy π1 P ΠM as
π1pa|sq “

dπps,aq

dπpsq
. Then, dπ

1

“ dπ.

This result states that for any non-Markovian policy deployed in a (c)MDP, there
exists a Markovian policy inducing the same state distribution. Since the infinite trials
objective depends only on the state distribution, it follows that Markovian policies are
indeed sufficient to optimize it. This is a powerful property, as it allows us to restrict
our search to Markovian policies without loss of optimality.

Almost surprisingly, the previous fact is accompanied by another powerfull result,
first described in Zahavy et al. [2021]: in cMDPs, the reward function is sufficient to
optimize the infinite trials objective. More formally, they show that the infinite trials
cRL objective (2.58) can be optimized by solving a sequence of standard RL problems
with appropriately defined (non-stationary) reward functions.

In particular, this can be done by reformulating the cMDP as a zero-sum game be-
tween a "policy player" (the agent) and a "cost player" (who sets the rewards), by
exploiting Fenchel duality:

Theorem 2.3.3 (Fenchel Duality for cMDPs [Zahavy et al., 2021]). A cMDP MF , with
F being a convex utility function, can be solved via the following min-max problem:

min
dπPV

Fpdπq “ min
dπPV

max
λPΛ

pλ ¨ dπ ´ F˚
pλqq “ max

λPΛ
min
dπPV

pλ ¨ dπ ´ F˚
pλqq, (2.65)
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where

V “

#

ν P ∆SˆA :
ÿ

aPA
νps, aq “ p1 ´ γqµpsq ` γ

ÿ

s1PS,a1PA
Pps|s1, a1

qνps1, a1
q, @s P S

+

is the set of valid discounted state-action distributions, Λ is the closure of (sub-)gradient
space tBFpνq|ν P Vu and F˚pλq :“ supλ λ ¨ dπ ´ Fpdπq is the Fenchel conjugate.

With this, they define the Lagrangian as Lpdπ, λq :“ λ ¨ dπ ´ F˚pλq: for a fixed
λ P Λ, minimizing the Lagrangian is then a standard RL problem, i.e., equivalent to
maximizing a reward R “ ´λ7 and the overall problem of maximizing a complex
utility function Fp¨q can be converted into solving a sequence of RL sub-problems
characterized by different reward functions at each stage. In other words, any cMDP
can be addressed by the following Algorithm:

Algorithm 2.2.3: Meta-Algorithm for cMDPs

Input: convex-concave Lagrangian L : V ˆ Λ Ñ R, sub-routine algorithms
Algλ,Algπ, number of iterations K P N
for k “ 1, . . . , K do

λk “ Algλpdπ1 , . . . , d
π
k´1q Ź Cost player update

dπk “ Algπp´λkq Ź Policy player update
end for
Return: d̄πK “ 1

K

řK
k“1 d

π
k , λ̄K “ 1

K

řK
k“1 λk.

The authors then analyze Algorithm 2.3.3 under the lenses of online convex opti-
mization: the learner is presented with a sequence ofK convex loss functions ℓ1, . . . , ℓK :
V Ñ R and at each round k must select a point xk P V after which it suffers a loss of
ℓkpxkq.8 In this context, the loss functions for the cost player are ℓλk “ ´Lp¨, λkq, and
for the policy player are ℓπk “ Lpdπk , ¨q. The learner then wants to minimize its average
regret, defined as

R̄K :“
1

K

˜

K
ÿ

k“1

ℓkpxkq ´ min
xPK

K
ÿ

k“1

ℓkpxq

¸

.

Thanks to this formulation, they are able to prove the following result:

Theorem 2.3.4 (No-Regret of Algorithm 2.3.3 [Zahavy et al., 2021]). Assume that
Algλ and Algλ have guaranteed average regret bounded as R̄π

K ď ϵK and R̄λ
K ď δK ,

respectively. Then Algorithm 2.3.3 outputs d̄πK and λ̄K satisfying

min
dπPV

Lpdπ, λ̄Kq ě F˚
´ ϵK ´ δK and max

λPΛ
Lpd̄πK , λq ď F˚

` ϵK ` δK ,

with F˚ “ mindπPV Fpdπq.

In other words, this theorem states that as long as no-regret algorithms are employed
for the sub-routine algorithms of both cost and policy players, then Algorithm 2.3.3

7For concave utilities, it is equivalent to optimizing against R “ λ.
8The learner is assumed to have perfect knowledge of the loss functions.
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will produce a solution to the cMDP problem to any desired tolerance. In other words,
rewards are indeed enough to solve cMDPs, as long as the infinite trials objective is
considered.

Finally, Zahavy et al. [2021] instantiates specific cost and policy players’ algorithms,
illustrating how indeed Algorithm 2.3.3 unifies several branches of RL problems, as
summarized in Table 2.1.

Objective Algλ,Algπ Application

λ ¨ dπ FTL/RL (Standard) RL
}dπ ´ dE}22 FTL/BR Apprenticeship Learning (AL) [Abbeel and Ng,

2004, Zahavy et al., 2020]
dπ ¨ logpdπq FTL/BR State Entropy Maximization [Hazan et al., 2019]
}dπ ´ dE}8 OMD/BR AL [Syed and Schapire, 2007, Syed et al., 2008]

Ec

“

λc¨
`

dπ d́Epcq
˘‰:

OMD/BR Inverse RL in contextual MDPs [Belogolovsky
et al., 2021]

λ1 ¨dπ , s.t.λ2 ¨dπ ďc OMD/RL Constrained MDP [Borkar, 2005, Altman, 1999,
Bhatnagar and Lakshmanan, 2012, Tessler et al.,
2019, Efroni et al., 2020, Calian et al., 2021]

distpdπ, Cq:: OMD/BR Feasibility of constrained cMDPs [Miryoosefi
et al., 2019]

minλ1,...,λk
dπk ¨ λk OMD/RL Adversarial MDPs [Rosenberg and Mansour, 2019]

KLpdπ}}dEq FTL/RL GAIL [Huang et al., 2016], State Marginal March-
ing [Lee et al., 2020]

´EzKLpdπz }}Ekd
π
k q; FTL/RL Diverse skill discovery [Gregor et al., 2017,

Achiam et al., 2018, Eysenbach et al., 2018, Haus-
man et al., 2018, Tirumala et al., 2022]

Table 2.1: Instances of Algorithm 2.3.3 for various cMDPs. FTL: Follow the Leader [Hazan et al.,
2006]; OMD: Online Mirror Descent [Beck and Teboulle, 2003]; RL: Reinforcement Learning;
BR: Best Response; dE: expert state(-action) distribution;: c is the context variable; :: C is a
convex set.

Non-Markovianity Matters with Single Trials

As discussed previously, the mismatch between the infinite-trials and finite-trials for-
mulations becomes critical when the RL agent is evaluated over only a handful of trials,
just one in the worst case. Interestingly, this mismatch is reflected in the nature of the
policies that attain the optimal solution. In particular, Mutti et al. [2023] shows that
while the optimal policy in the infinite-trials setting is a Markovian policy, single-trial
problems always admit a deterministic non-Markovian optimal policy, whereas the best
policy within the space of Markovian policies must be randomized. Crucially, they also
show that this randomization degrades the single-trial performance of Markovian poli-
cies compared to the optimal non-Markovian policy.

Their analysis leverages the notion of a value gap, defined as the difference between
the value of a policy and the value of an optimal policy over a certain horizon. For a
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horizon T , it is defined as

VT pπq “ F˚
´ Ed1„pπ1

rFpd1qs , (2.66)

where F˚ “ maxπ˚PΠ Ed1„pπ
˚

1
rFpd1qs is the value achieved by an optimal policy π˚ P

Π over T steps. Similarly, Vtpπ, sq denotes the value gap induced by π over t steps
starting from the state s, such that VT pπq “ Es„µrVT pπ, sqs and V0pπ, sq “ 0 for all
s P S.

Using this concept, it is possible to formalize how non-Markovian policies enjoy
favorable properties. First of all, the following result holds:

Lemma 2.3.5. For every convex MDP MF , there exists a deterministic non-Markovian
policy πNM P ΠD,NM such that

πNM P arg max
πPΠNM

Ed1„pπ1
rFpd1qs , (2.67)

which suffers zero value gap: VT pπNMq “ 0.

Moreover, whenever the deterministic non-Markovian optimal policy must adapt its
decisions based on the history leading to a state, an optimal Markovian policy for the
same objective must necessarily be stochastic. This randomization is harmful to its
performance:

Lemma 2.3.6. Let πM be an optimal Markovian policy for ζ1pπq in the cMDP MF .
Then for any st P T t

S , VT´tpπMq ď VT´tpπMq ď VT´tpπMq where

VT´tpπMq “
F˚ ´ F˚

2

πMpa˚ | stq
Vars‘st„p

πNM
1,t

rE rBpπNMpa˚
| s ‘ stqqss ,

VT´tpπMq “
F˚ ´ F˚

πMpa˚ | stq
Vars‘st„p

πNM
1,t

rE rBpπNMpa˚
| s ‘ stqqss ,

where πNM P argmaxπPΠD,NM Ed1„pπ1
rFpd1qs, Var denotes the variance of a random

variable, Bpxq denotes a Bernoulli variable with parameter x, and

F˚ “ min
sPT T´t

S

Fpdp¨ | st ‘ sqq,

F˚
2 “ max

sPT T´t
S zT T´t,‹

S

Fpdp¨ | st ‘ sqq s.t. T T´t,‹
S “ argmax

sPT T´t
S

Fpdp¨ | st ‘ sqq.

These two results can be combined into the following theorem:

Theorem 2.3.7. For every convex MDP MF , the optimal policy πNM is deterministic
and non-Markovian, whereas the optimal Markovian policy πM is randomized. The
value gap of the optimal Markovian policy satisfies

VT pπMq ě VT pπNMq “ 0. (2.68)

This result highlights the importance of non-Markovianity in single-trial convex RL:
the class of Markovian policies is dominated by that of non-Markovian policies. Most
importantly, it shows that non-Markovian policies are strictly better than Markovian
ones in many convex MDPs of practical interest, particularly those where the optimal
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Markovian policy must be randomized to achieve optimality. The key insight is that
this happens because of its inability to disambiguate the underlying history, whereas a
non-Markovian policy can leverage the full trajectory and deterministically select the
optimal action.

Unfortunately, despite the theoretical appeal of non-Markovian policies, they are
notoriously difficult to learn. For this reason, the following sections explore the role of
Markovian policies and discuss how one might circumvent the need for non-Markovian
policies using alternative approaches.
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CHAPTER3
Unsupervised Pre-Training in Reinforcement

Learning

In the previous chapter, we presented a broad overview of how RL provides a power-
ful framework for solving sequential decision-making problems. Due to its favorable
properties, RL achieved impressive results even in complex domains, ranging from
video-games [Mnih et al., 2013, 2015, Silver et al., 2016, Berner et al., 2019, Wurman
et al., 2022] to nuclear-reactor control [Duval et al., 2024].

However, a closer examination of the learning pipelines in these success stories re-
veals a considerable degree of human supervision. In particular, RL has demonstrated
its full potential primarily in settings where a clear and informative reward function
is available, offering a direct link between task specification and agent feedback. Yet
in practice, such reward functions are rarely innate to the environment. Instead, they
are often painstakingly designed by human experts, with the intent of encouraging de-
sirable behaviors. This design process is non-trivial and typically requires extensive
domain knowledge, significantly limiting the autonomy of RL agents. As a result, RL’s
promise as a fully autonomous learning paradigm remains undercut: every new task de-
mands a bespoke reward formulation, and the generalization capabilities across tasks,
as achieved via unsupervised pre-training in other areas of machine learning, have yet
to be fully realized in RL. Most contemporary RL methods still operate in a tabula
rasa fashion, learning from scratch, which is not only inefficient but often impracti-
cal in real-world applications, where data collection is costly, time-consuming, or even
risky [Agarwal et al., 2022].

In response to these challenges, the framework of unsupervised RL [Laskin et al.,
2021] has recently emerged as a compelling alternative, offering the potential to over-
come these limitations through pre-training. In this setting, learning is decomposed into
two distinct phases, as visualized in Fig. 3.1. The first, known as the unsupervised pre-
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PHASE 1 PHASE 2

CMP M MDP MR TASK R

UNSUPERVISED
PRE-TRAINING

SUPERVISED
FINE-TUNING

M ∈ M

Pre-Trained
Model

π ∈ argmaxV π

Optimal Policy

Figure 3.1: Unsupervised RL as of Laskin et al. [2021], Mutti [2023].

training phase, involves the agent interacting with a CMP to acquire general-purpose
knowledge, which is distilled into a pre-trained model. This model, denoted by M, can
take various forms: a representation of transition dynamics, an abstract state represen-
tation, a single policy, a policy class, or simply a dataset of collected trajectories. The
goal of this phase is not to solve a particular task, but to encode useful knowledge about
the environment that can later facilitate learning.

The second phase, termed supervised fine-tuning, begins once a reward function R
is revealed. At this point, the CMP becomes a standard MDP MR, and the agent lever-
ages the pre-trained model M to efficiently solve the new objective. Depending on the
nature of M, this may involve direct planning (if M models transitions accurately) or
further interaction with the environment (if M represents an exploratory policy). A key
advantage of this approach is that the same model M can be reused across multiple tasks
defined on the same CMP. Although the unsupervised pre-training phase may be com-
putationally intensive, its benefits can amortize over a broad spectrum of downstream
tasks, significantly reducing the learning burden during fine-tuning.

Let M denote the class of models to be pre-trained. We can then define the objective
of unsupervised pre-training as follows:

max
MPM

Fpre-trainpM,Mq, (3.1)

where Fpre-train is a task-agnostic objective that scores the utility of a model M P M in
capturing relevant structure in the CMP M. For example, in the context of this thesis,
we focus on the case where M is the space of Markovian policies Π, the model M
corresponds to a policy π P Π, and the objective Fpre-train is the entropy H of the state
distribution dπ induced by π over M [Hazan et al., 2019].

Beyond entropy maximization, the literature has explored a variety of model classes
M and objectives Fpre-train, some of which involve complex inner-loop computations
such as planning [Jin et al., 2020]. The central theme is to construct models that yield
downstream benefits when a reward function becomes available.

Once the reward R is introduced, the fine-tuning objective is given by:

max
πPΠ

JMRpπ,Mq, (3.2)

where the agent’s goal is to optimize performance in the MDP MR, leveraging the
pre-trained model M P M. For instance, M could be a policy π that initializes an RL
algorithm, replacing the standard random initialization. While the nature of the objec-
tive in Eq. (3.2) remains that of standard RL, the presence of the pre-trained model may
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3.1. Literature Overview of Pre-Training in Reinforcement Learning

significantly accelerate learning, yielding significant empirical [Laskin et al., 2021] and
theoretical [Jin et al., 2020, Xie et al., 2022] benefits, also in terms of regret minimiza-
tion.

Formally, the regret of a learning algorithm A over K episodes in the MDP MR is
defined as:

RegKpMR,Aq “ Es„µ

»

–

ÿ

kPrKs

pV ‹
psq ´ V πkpsqq

fi

fl ,

where V ‹ is the optimal value function in MR, and V πk is the value function of the
policy πk deployed at episode k by algorithm A. The benefit of pre-training can thus
be quantified by comparing the regret of A when initialized with a pre-trained model
M versus a random initialization [Ye et al., 2023].

Importantly, it has been shown that any RL algorithm learning from scratch in a
tabula rasa fashion must incur at least Ωp

a

|S||A|HKq regret [Auer et al., 2008]. In
contrast, if the pre-trained model M enables near-optimal zero-shot planning across
all reward functions R, the regret can be reduced to a constant ϵ, or at the very least,
improved significantly through better multiplicative constants when using carefully pre-
trained policies [Ye et al., 2023].

3.1 Literature Overview of Pre-Training in Reinforcement Learning

This section presents an overview of the literature surrounding (unsupervised) pre-
training in RL. While the field of unsupervised RL is still relatively new, it is rapidly
evolving, with an increasing number of methods being proposed to overcome the lim-
itations of learning from scratch. A central axis of classification within this body of
work lies in identifying the type of model that is pre-trained during the unsupervised
phase and subsequently transferred to the supervised phase. In what follows, we review
representative approaches across different categories of pre-trained models, which are
also summarized in Table 3.1 for convenience. Our analysis follows the taxonomy
from Mutti [2023], updated to cover more recent results in the field. However, we note
that Agarwal et al. [2025a] offers a different classification that includes a few works
not covered by this framing.

3.1.1 Representations Pre-Training

Many RL tasks involve high-dimensional and complex inputs such as visual data, for
which suitable representations are often critical to achieve good performance [Merck-
ling, 2021]. In this context, substantial effort has been dedicated to learning useful
representations of the environment independently of any specific task. This line of
work naturally fits the unsupervised pre-training paradigm, where the aim is to learn
a mapping from input pairs to a lower-dimensional representation space, denoted as
Mϕ “

␣

ϕ : O ˆ A Ñ Rd
(

.
Several studies have shown that task-agnostic state-action representations can be

used to factorize the transition dynamics of the environment, enabling efficient planning
during the supervised fine-tuning phase. Notably, works such as Misra et al. [2020],
Agarwal et al. [2020], Modi et al. [2024] develop theoretical frameworks in which
the transition function of a reward-free POMDP admits a low-rank decomposition of
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the form Ppo1 | o, aq “ ϕpo, aq ¨ ψpo1q, under structural assumptions. By planning
directly in the space of such reduced representations, agents can often recover optimal
or near-optimal strategies with minimal or no further interaction during fine-tuning.
These works also provide analyses of the sample complexity involved in representation
learning and the associated sub-optimality guarantees of downstream policies, in both
model-based [Agarwal et al., 2020] and model-free [Modi et al., 2024] regimes.

In addition to these theoretically grounded approaches, a parallel line of research has
focused on representation learning through neural networks trained with unsupervised
objectives. These include contrastive losses [Laskin et al., 2020, Luu et al., 2022],
reconstruction-based losses [Burda et al., 2019, Anand et al., 2019, Seo et al., 2022,
Meng et al., 2023], and others. Although these methods provide weaker theoretical
guarantees, they have demonstrated strong empirical performance on high-dimensional
RL benchmarks [Laskin et al., 2021, Luu et al., 2022, Yoon et al., 2023]. Complement-
ing this trend, Yuan et al. [2022] found that visual encoders pre-trained on unrelated
domains (e.g., ImageNet) can provide general-purpose features useful for a wide range
of RL tasks, showcasing the broader potential of transfer learning across domains. Fi-
nally, the work of Yu et al. [2025] extended representation pre-training to the multi-
agent setting, showing that contrastively pre-trained communication networks between
agents can generalize across different MARL tasks in a similar fashion.

3.1.2 Transition Models Pre-Training

Another prominent direction in unsupervised pre-training for RL is based on learning
accurate models of the transition dynamics. Within this framework, the goal is often
to estimate the function p P Mp “ tp : S ˆ A Ñ ∆Su that maps state-action pairs to
distributions over next states. The rationale is that such models can be used for plan-
ning or as simulators during the supervised fine-tuning stage, especially when direct
interaction with the environment becomes expensive or limited.

The typical pre-training objectives in this case either seek to minimise the dis-
crepancy between the learned model and the true transition kernel, or to ensure near-
optimality of the learned model across all possible reward functions. The first strategy
leads to objectives of the form

min
pPMp

sup
ps,aqPSˆA

}P ps1
| s, aq ´ p ps1

| s, aq}2 , (3.3)

while the second aims to minimize the performance gap between the optimal policy
induced by the learned model and the optimal policy for the true model under a worst-
case reward:

min
pPMp

sup
RPtSˆAÑr0,1su

E
s„µ

“ˇ

ˇV ˚
P psq ´ V ˚

p psq
ˇ

ˇ

‰

. (3.4)

The second formulation, in particular, has given rise to conceptually grounded ap-
proaches such as reward-free RL [Jin et al., 2020, Kaufmann et al., 2021, Ménard et al.,
2021, Zhang et al., 2020d] and task-agnostic RL [Zhang et al., 2020c].

This formulation inspired practical implementations like the one of Touati and Ol-
livier [2021], in which a Forward-Backward (FB) representation is proposed, so as to
make the fine-tuning phase extremely efficient. Later, Touati et al. [2023] noticed that
FBs perform better and consistently across a variety of tasks compared to other rep-
resentations such as Successor Features (SFs). More recently, Agarwal et al. [2025b]
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introduced the concept of Proto Successor Measures (PSMs), demonstrating that any
possible behavior can be represented using an affine combination of these functions, yet
that their linearity and the fact that they are policy independent makes the fine-tuning
phase extremely easier. Recently, Agarwal et al. [2025a] outlined a comprehensive
treatment of the relationships among these objects, proposing a unified framework for
FBs, PSMs, SFs and other representations.

Additionally, this line of research has recently led to the development of so-called
behavioral foundation models [Tirinzoni et al., 2025, Sikchi et al., 2025], which aim to
learn task embeddings alongside corresponding near-optimal behaviors and incorporat-
ing an inference procedure to directly retrieve the latent task embedding and associated
policy for any given reward function.

In parallel, the estimation-oriented objective in Eq. (3.3) has been adopted in both
theoretical studies [Tarbouriech et al., 2020] and empirical works targeting complex
observation spaces. This line of research has led to the development of so-called world
models [Ha and Schmidhuber, 2018, Hafner et al., 2019, Matsuo et al., 2022, Hafner
et al., 2023], which aim to learn compact and expressive simulators of the environment.

Remarkably, recent results [Pearce et al., 2024] have shown that world model pre-
training exhibits similar scaling laws to those observed in large language models, sug-
gesting deep connections between predictive modeling across modalities. Addition-
ally, alternate pre-training objectives have been proposed to accelerate transition model
acquisition. Among these, curiosity-based intrinsic motivations [Schmidhuber, 1991,
Pathak et al., 2017, Burda et al., 2018] reward agents for seeking out novel or surprising
transitions, thereby guiding exploration in the absence of an external reward.

3.1.3 Datasets Pre-Training

A third and increasingly popular approach to unsupervised pre-training involves col-
lecting a dataset of environment interactions rather than directly pre-training a model.
In this paradigm, the unsupervised phase focuses on generating informative data, which
can later be leveraged during the supervised fine-tuning phase through direct planning
or via offline RL algorithms [Levine et al., 2020]. This strategy reframes the pre-
training problem as one of data acquisition, where the objective is to gather a dataset
that maximises the utility of future decision-making. Formally, the model class can be
informally described as MD, consisting of all datasets D made up ofN transition tuples
ps, a, s1q. The central questions in this line of work pertain to how such a dataset should
be constructed-specifically, what policies or exploration strategies should be employed
during data collection, and how large the dataset needs to be to guarantee useful per-
formance upon fine-tuning.

Some of the most influential theoretical work in this domain draws inspiration from
reward-free RL. Rather than learning a parametric model or representation, these stud-
ies consider objectives that seek to minimize policy sub-optimality with respect to a
fixed dataset. For example, Wang et al. [2020], Zanette et al. [2020] propose a dataset-
based analogue of the objective in Eq. (3.4), where planning is performed using an
offline RL algorithm acting on a fixed transition dataset:

min
DPMD

sup
RPtSˆAÑr0,1su

E
s„µ

”ˇ

ˇ

ˇ
V ˚
P psq ´ pVDpsq

ˇ

ˇ

ˇ

ı

, (3.5)
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where pVDpsq denotes the value function under the policy obtained by an offline algo-
rithm that uses D as its input. In the special case of linear MDPs-where the transition
dynamics admit a linear decomposition with respect to some known representation-
these works provide compelling theoretical guarantees on the effectiveness of the col-
lected dataset.1

Beyond theoretical guarantees, recent empirical work has focused on designing
practical strategies for data collection in complex and high-dimensional domains [Yarats
et al., 2022, Lambert et al., 2022]. While these methods may lack the formal guarantees
provided by reward-free RL, they impose no restrictive assumptions on the structure of
the environment and remain compatible with a broad range of offline RL algorithms
during the fine-tuning phase.

3.1.4 Policy Spaces Pre-Training

An alternative set of methodologies involves pre-training within the policy space using
unsupervised interactions. The underlying intuition is to reduce the complexity of the
search space for downstream tasks: by learning a structured or compressed policy space
during the unsupervised phase, the supervised fine-tuning stage can more effectively
identify a high-performing policy with reduced sample complexity. In this setting, the
model class is given by MΠ “ tΠred P PpΠqu, where PpΠq denotes the power set of
the policy space Π.2

From a theoretical perspective, several works have focused on formal criteria for
constructing the reduced policy space Πred. A typical objective in this line of re-
search involves maximizing the coverage of the state-action distribution induced by
policies in Πred, ensuring it approximates the distributional support of the full policy
space Π [Mutti et al., 2022c, Ye et al., 2023, Tenedini et al., 2025]. When this coverage
condition is satisfied, fine-tuning can be restricted to the smaller space Πred without sig-
nificant loss of optimality, often resulting in improved regret bounds [Ye et al., 2023]
and more sample-efficient learning [Tenedini et al., 2025].

On the methodological side, many approaches have embraced diversity-driven ob-
jectives for constructing Πred. Instead of attempting exhaustive coverage, these meth-
ods aim to pre-train a compact set of diverse skills or policies that span a wide range
of behaviors. A common formalism in this context is the maximization of mutual in-
formation between latent variables and the induced trajectories or outcomes of the pol-
icy [Gregor et al., 2017, Eysenbach et al., 2018, Hansen et al., 2019, Sharma et al., 2019,
Campos et al., 2020, Liu and Abbeel, 2021a, He et al., 2022, Zahavy et al., 2022]. These
techniques, often framed under the umbrella of unsupervised skill discovery, produce a
discrete or continuous set of skills that can serve as primitives for hierarchical RL or as
an initial basis for fine-tuning on specific downstream tasks.

While many of these approaches are heuristic in nature and lack formal guarantees,
they have demonstrated practical effectiveness in a range of complex environments.
Moreover, the learned skill sets or policy subsets often encode reusable behavioral
abstractions that can be efficiently recombined, making them attractive for general-
purpose RL pipelines.

1In this context, the transition model is presumed to possess a linear representation, which facilitates theoretical examination.
2PpΠq represents the power set of the policy space Π.
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3.1.5 Policies Pre-Training

Among the various potential targets for pre-training, this thesis focuses exclusively on
the unsupervised pre-training of policies, where the model class M corresponds to a
policy space Π. This objective can be formally expressed as:

max
πPΠ

F pdπq , (3.6)

where dπ denotes the state distribution induced by policy π under the CMP M, and
F is a functional mapping state distributions to real values, i.e., F : ∆S Ñ R. The
central aim of optimising (3.6) is to learn a policy that accelerates supervised fine-
tuning [Uchendu et al., 2023]. In this thesis, we centre our discussion on the pre-
training phase. Although we present fine-tuning results, we adopt simple strategies to
deploy the pre-trained policy, intended primarily for evaluating pre-training effective-
ness rather than advancing fine-tuning methodology.

The foundational idea of using entropy-based objectives for policy pre-training was
introduced by Hazan et al. [2019], who proposed maximising the Shannon entropy
of the discounted state distribution. Their algorithm constructs a mixture of policies
through a gradient method, iteratively estimating the state distribution and solving a
sequence of RL subproblems. A similar game-theoretic approach was later proposed
by Lee et al. [2020], targeting the entropy of the marginal state distribution instead.
Other gradient approaches include Tarbouriech and Lazaric [2019], which focuses on
the stationary state-action distribution, though this technique may suffer from slow con-
vergence of the policy mixture. A related method by Mutti and Restelli [2020] seeks to
pre-train a single policy that simultaneously accounts for the entropy of the stationary
distribution and the system’s mixing time.

While some of these methods have been evaluated in continuous domains [Hazan
et al., 2019, Lee et al., 2020], they typically rely on accurate estimation of either the
state distribution [Hazan et al., 2019, Lee et al., 2020] or the transition dynamics [Tar-
bouriech and Lazaric, 2019, Mutti and Restelli, 2020], which limits their applicabil-
ity in complex, high-dimensional environments. To address this, Mutti et al. [2021]
proposed a non-parametric entropy estimator and optimised it via policy gradient, en-
abling single-policy pre-training in challenging continuous control domains. This ap-
proach was extended by Liu and Abbeel [2021a], who integrated entropy estimation
with learned state embeddings for visual-input domains. Even random encodings, as
shown by Seo et al. [2021], can suffice for entropy-driven pre-training. Similarly, Yarats
et al. [2021] explored concurrent learning of state representations and latent prototypes
to stabilise entropy estimates.

Building upon these advances, Zahavy et al. [2021] provided a theoretical formu-
lation by framing entropy maximization as an instance of convex RL. Using Fenchel
duality, they cast the problem as a two-player zero-sum game-between a policy player
and a reward-generating adversary, and applied no-regret algorithms to minimise regret
in this setting. The resulting MetaEnt algorithm offers strong sample complexity guar-
antees. This line of work was extended in Tiapkin et al. [2023], who examined both
visitation and trajectory entropy. They proposed EntGame, a game-theoretic approach
with improved sample complexity over prior methods, and RL-Explore-Ent, an algo-
rithm that solves regularised Bellman equations using transition models learned from
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exploratory trajectories.
While prior methods primarily rely on Shannon entropy, recent work explores al-

ternatives. Zhang et al. [2021a] argued that Rényi entropy provides better coverage in-
centives and introduced MaxRenyi, a method for directly optimising this objective. In
parallel, Guo et al. [2021] proposed a geometry-aware entropy that incorporates struc-
tural properties of the space. Another perspective comes from Nedergaard and Cook
[2022], who maximise a lower bound on state entropy, demonstrating superior pol-
icy quality in some settings. Their estimator, a k-means-based approximation, is also
used by Yang and Spaan [2023], who incorporate safety constraints into the entropy
maximisation problem and present a trust-region method with convergence guarantees.
Finally, Jain et al. [2023] introduced ηψ-Learning, which combines predecessor (η) and
successor (ψ) representations to estimate entropy from single trajectories. This allows
the synthesis of deterministic, non-Markovian policies from trajectory-based learning.
A comprehensive empirical evaluation by Zisselman et al. [2023] confirmed the gener-
alisability of pre-trained policies across tasks.

Recent studies have begun extending entropy maximization principles to settings
beyond MDPs. For POMDPs, Savas et al. [2022] designed finite-state controllers to
maximise the entropy of observation trajectories under reward constraints, while Zam-
boni et al. [2024b,a] developed policy optimisation methods that operate on observa-
tions or latent state representations. These approaches focus on achieving theoretical
guarantees relative to entropy objectives over the true latent state space. In the con-
text of Markov games, Zamboni et al. [2025b] proposed a decentralised trust-region
approach to maximise entropy over the state space, and Gemp et al. [2025] introduced
a centralised projected-gradient algorithm with convergence guarantees, yet assuming
model knowledge. Similarly, in the context of Parallel MDPs [Sucar, 2007], De Paola
et al. [2025] proposed a policy gradient method to enhance exploration in parallel set-
tings, showing that parallel exploration is more efficient than single-agent exploration
when mixture distributions are properly exploited. A summary of these entropy-based
policy pre-training algorithms is presented in Table 3.2.

As a final note, in parallel to these developments, another stream of research has ex-
plored the pre-training of high-level policies through imitation learning on pre-collected
datasets. These approaches provide temporally abstract actions that facilitate down-
stream tasks within hierarchical RL frameworks [Pertsch et al., 2021, Baker et al., 2022,
Ramrakhya et al., 2023, Yuan et al., 2024].

3.2 A Dive Into Policy Pre-Training via State Entropy Maximization

In the previous section, we provided a high-level overview of the diverse methods em-
ployed to address policy pre-training through the optimization of functionals over the
induced state distribution. We now delve into a more detailed exposition of the foun-
dational work by Hazan et al. [2019], which will serve as the theoretical basis for the
remainder of this thesis. In their seminal contribution, the authors propose the entropy
of the state distribution induced by a policy as an objective for exploration in the ab-
sence of extrinsic rewards. They formally define the entropy objective as:

Hpdπγq :“ ´Es„dπγ

“

log dπγpsq
‰

,
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Algorithm Distribution Space Reference

MaxEnt Discounted State Hazan et al. [2019]
FW-AME Stationary State-Action Tarbouriech and Lazaric [2019]
SMM Marginal State Lee et al. [2020]
IDE3AL Stationary State Mutti and Restelli [2020]
MEPOL Marginal State Mutti et al. [2021]
MaxRényi Discounted State-Action Zhang et al. [2021a]
GEM Marginal State Guo et al. [2021]
APT Marginal State Liu and Abbeel [2021b]
RE3 Marginal State Seo et al. [2021]
Proto-RL Marginal State Yarats et al. [2021]
MetaEnt Discounted State Zahavy et al. [2021]
RL-Explore-Ent Discounted State Trajectories Zahavy et al. [2021]
KME Discounted State Nedergaard and Cook [2022]
FSC Stationary Observation Trajectories Savas et al. [2022]
CEM Marginal State Yang and Spaan [2023]
ηψ-Learning Discounted State Jain et al. [2023]
ExpGen Marginal State Zisselman et al. [2023]
MOE Marginal Observation Zamboni et al. [2024b]
MBE Marginal Latent State Zamboni et al. [2024a]
TRPE Marginal State Zamboni et al. [2025b]
PGL Marginal State Gemp et al. [2025]
PGPSE Marginal State De Paola et al. [2025]

Table 3.2: Overview of the literature in Unsupervised Pre-Training for RL via Maximum Entropy.
For each algorithm, we report the nature of the objective, i.e., whether it considers stationary,
discounted, or marginal distributions (Distribution), and which space it accounts for (Space).

where H denotes the Shannon entropy and dπγ the discounted state distribution induced
by policy π. Since H is a concave function of dπγ , this formulation aligns naturally
with the framework of Convex RL [cRL, Hazan et al., 2019, Zhang et al., 2020c]. The
infinite-horizon nature of the discounted formulation renders the problem analogous to
a cRL setting with infinite trials in episodic environments.3

While algorithms with provable efficiency have been developed for this infinite-trial
cRL setting [Zhang et al., 2020a, Zahavy et al., 2021], it is important to discuss the
computational implications specific to the state entropy maximization problem. Before
turning to those considerations, we briefly motivate why maximizing the entropy of the
state distribution has emerged as a central objective in unsupervised RL.

3To make this connection explicit, consider a long trajectory generated by the Markov chain under policy π. As temporal
correlations decay over time, one can treat distant segments of the trajectory as independent episodes. Averaging state visitations
over such episodes yields an estimate of the discounted state distribution dπγ .
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3.2. A Dive Into Policy Pre-Training via State Entropy Maximization

Motivation

The rise of state entropy maximization as a pre-training objective is primarily attributed
to its strong empirical performance [Laskin et al., 2021], especially in practical, high-
dimensional domains. However, there are also compelling informal arguments that
offer insight into its effectiveness. In the context of offline RL [Levine et al., 2020],
which focuses on learning near-optimal policies from fixed datasets, it is well estab-
lished [Antos et al., 2008, Chen and Jiang, 2019, Jin et al., 2021b, Foster et al., 2021,
Zhan et al., 2022] that the coverage of the state space in the dataset plays a pivotal role
in determining the sample complexity. This requirement is often quantified through the
concentrability coefficient:

CpDq :“ sup
πPΠ,sPS

dπγpsq

Dpsq
, (3.7)

where Dpsq denotes the empirical state distribution in the dataset. The rationale behind
this condition is that adequate coverage of the state space ensures that the dataset con-
tains enough information to accurately evaluate the optimal action in each state with
high probability.

Recent work by Xie et al. [2022] explicitly connects the initial policy’s state cover-
age to the sample complexity of the fine-tuning task, extending the relevance of cover-
age conditions to the online RL setting. In this light, unsupervised policy pre-training
can be viewed as the problem of finding a policy that induces an optimal data distri-
bution D. While directly minimising the concentrability coefficient over all policies is
intractable, entropy maximization offers a tractable surrogate by encouraging uniform
coverage of the state space.

Policies optimised for state entropy have also proven effective in related settings,
such as the reward discovery problem Tarbouriech and Lazaric [2019], which seeks to
minimise the number of interactions needed to visit all state-action pairs at least once
(in high probability), and the reward-free RL formulation [Jin et al., 2020], which in-
volves collecting information sufficient to compute near-optimal policies for any reward
function (in high probability).

The Policy Viewpoint: Primal Problem

In its primal form, the objective of state entropy maximization entails directly search-
ing for a policy that induces a high-entropy state distribution. This objective can be
expressed as:

max
πPΠ

Hpdπγq, (3.8)

where the policy π P Π is the optimisation variable. Although Eq. (3.8) is framed as
the maximisation of a concave function, the relationship between the policy parameters
πpa | sq and the resulting state distribution dπγ is highly non-trivial. Specifically, dπγ is
defined recursively as:

dπγpsq “ p1 ´ γqµpsq ` γ
ÿ

s1PS

ÿ

a1PA
dπγps1

qπpa1
| s1

qPps | s1, a1
q,
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Chapter 3. Unsupervised Pre-Training in Reinforcement Learning

where µ is the initial state distribution, γ is the discount factor, and P is the transition
kernel of the environment. As shown by Hazan et al. [2019], this recursive dependence
implies that Hpdπγq is not a concave function of the policy parameters, which compli-
cates the use of standard policy gradient methods [Sutton et al., 1999] for optimisation.
In particular, gradient ascent on the entropy objective, i.e., computing ∇πHpdπq, does
not guarantee convergence to a global optimum.

To address this challenge, Hazan et al. [2019] introduce a gradient (Frank-Wolfe)
method that iteratively constructs a mixture of policies to approximate the entropy-
optimal distribution. We discuss their approach in detail in the following section. In
subsequent chapters, we examine alternative surrogate objectives that make the primal
entropy maximization problem more tractable for modern optimisation techniques.

Frank-Wolfe for Maximum State Entropy

To address the non-concavity of the primal objective (3.8), Hazan et al. [2019] propose
a conditional gradient method-commonly known as the Frank-Wolfe algorithm [Frank
et al., 1956], in a method they call MaxEnt. Rather than directly optimizing the in-
tractable primal objective, MaxEnt decomposes it into a sequence of more manageable
sub-problems. The solution to each sub-problem contributes to constructing a mixture
of policies, whose overall state distribution progressively maximizes entropy.

Each sub-problem is formulated as solving a MDP using a reward function defined
by the gradient of the entropy at the current policy mixture. Specifically, the reward is
given by

Rpsq “ p∇πHpdπmixqq psq, (3.9)

where dπmix denotes the state distribution induced by the current policy mixture. Algo-
rithm 3.2 summarizes the MaxEnt procedure. Detailed algorithmic insights and imple-
mentation notes can be found in Hazan et al. [2019].

Assuming full knowledge of the environment, particularly the transition model P-
MaxEnt is guaranteed to output a policy πmix such that

Hpdπmixq ě max
πPΠ

Hpdπq ´ ϵ

in a number of iterations
T “ polyp|S|, |A|, 1

ϵ
, 1
1´γ

q,

thereby establishing its computational efficiency.
When the transition model P is unknown, MaxEnt remains applicable in a model-

free setting. In this case, the algorithm relies on two components: (i) a density estimator
capable of approximating the induced state distribution d̂πmix , and (ii) a planning oracle
that computes a near-optimal policy for the reward defined by the entropy gradient.
Provided both components are implemented in a provably efficient manner, MaxEnt
can achieve near-optimality by using

Õ

ˆ

|S|2|A|

ϵ3p1 ´ γq2

˙

samples from the environment-making the algorithm statistically efficient as well.

48



i
i

“thesis” — 2025/10/7 — 20:16 — page 49 — #59 i
i

i
i

i
i

3.2. A Dive Into Policy Pre-Training via State Entropy Maximization

Algorithm 3.2: MaxEnt [Hazan et al., 2019]

Input: Step size α, iterations T , tolerance ϵ
Initialize π0 arbitrarily, set γ0 “ 1, C0 “ tπ0u, and πmix “ pγ0, C0q

for t “ 0, . . . , T ´ 1 do
Estimate d̂πmix up to error ϵ
Compute rewards Rpsq “ p∇πHpdπmixqq psq
Compute ϵ-optimal policy πt using planning with reward R
Update mixture:

γt`1 “ pp1 ´ αqγt, αq, Ct`1 “ pC0, . . . , πtq

Update πmix “ pγt`1, Ct`1q

end for
Output: State-entropy-maximizing policy πmix

While MaxEnt offers strong theoretical guarantees, a few practical limitations are
worth noting. First, it outputs a mixture of policies rather than a single Markovian
policy. Though this mixture can be projected onto a single policy that approximates
the same state distribution, such projection may entail computational or performance
trade-offs. Alternatively, one might consider using the mixture directly for fine-tuning,
though most standard RL algorithms are not designed to operate with policy mixtures.

Second, although state density estimation is straightforward in tabular domains, ex-
tending this to continuous or high-dimensional state spaces is significantly more chal-
lenging. The effectiveness and scalability of MaxEnt in such settings remain open areas
of research.

The Occupancy Measure Viewpoint: Dual Problem

While the objective in Eq. (3.8) is concave in the state distribution, its dependence
on the policy parameters makes the overall optimization problem non-concave. This
observation motivates a dual formulation, where instead of optimizing over policies,
we optimize directly over state(-action) distributions subject to consistency constraints.

To this end, we define again the set of valid discounted state-action distributions as:

V “

#

ν P ∆SˆA :
ÿ

aPA
νps, aq “ p1 ´ γqµpsq ` γ

ÿ

s1PS,a1PA
P ps|s1, a1

qνps1, a1
q, @s P S

+

.

With a slight abuse of notation, let νpsq :“
ř

aPA νps, aq denote the marginal state
distribution induced by ν. The dual optimization problem then becomes:

max
νPV

Hpνq, (3.10)

where Hpνq :“ ´
ř

sPS νpsq log νpsq is the entropy of the induced state distribution.
Because N is a convex polytope [Puterman, 2014] and Hpνq is concave in ν, Eq. (3.10)

is a linearly constrained concave program-making it amenable to standard convex op-
timization techniques. Specifically, this formulation involves |S||A| optimization vari-
ables and 2|S||A| ` |S| linear constraints.
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Chapter 3. Unsupervised Pre-Training in Reinforcement Learning

Once the optimal solution ν˚ P argmaxνPV Hpνq is obtained, a corresponding pol-
icy πν˚ that achieves maximum entropy can be extracted via normalization:

πν˚pa|sq “
ν˚ps, aq

ř

a1PA ν
˚ps, a1q

@s P S, @a P A.

This dual perspective provides a tractable and theoretically elegant approach to the
state entropy maximization problem. In tabular domains, the dual problem can be
solved efficiently using off-the-shelf solvers. However, the approach faces notable lim-
itations. The number of variables and constraints grows linearly with |S||A|, making it
computationally burdensome in large-scale settings. More critically, extending this for-
mulation to continuous or high-dimensional spaces is non-trivial, as the set V becomes
infinite-dimensional and the entropy functional may lose tractability.

Despite these challenges, the occupancy measure view offers important conceptual
insight and lays the foundation for further approximation-based methods in more com-
plex settings.
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CHAPTER4
Unsupervised Pre-Training with Partial

Observability

In Chapter 3, we discussed various approaches to unsupervised pre-training in RL.
While most of the existing literature has focused on representation learning for partially
observable settings, the idea of directly pre-training policies in POMDPs remained sig-
nificantly underexplored-despite the demonstrated effectiveness of such strategies in
fully observable environments and the ubiquity of partial observability in real-world
applications. Consider, for instance, a financial trading scenario, where an agent ob-
serves only market indicators like prices and volumes, while the latent variables that
truly drive market dynamics-such as sentiment or company health-remain hidden.

This chapter investigates how unsupervised pre-training techniques can be extended
to handle partial observability, through the lens of state entropy maximization. Beyond
the intellectual appeal of optimizing unobservable quantities, we argue that this line
of work is essential for bridging the gap between recent theoretical insights and their
practical deployment in real-world systems. In Section 4.1, we analyze the fundamental
limitations of directly maximizing entropy over raw observations, and in Section 4.2,
we introduce scalable solutions that sidestep these limitations and are better suited for
practical implementation.

This chapter is based on two papers:"The Limits of Pure Exploration in POMDPs:
When the Observation Entropy is Enough", co-authored with D. Cirino, M. Restelli,
and M. Mutti, published at RLC 2024 (Section 4.1); "How to Explore with Belief: State
Entropy Maximization in POMDPs", with the same authors, published at ICML 2024
(Section 4.2).1

1A complete reference can be found in the bibliography [Zamboni et al., 2024a,b]
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Chapter 4. Unsupervised Pre-Training with Partial Observability

Convex Formulation of Partially Observable MDPs

We begin by introducing a general framework that adapts the convex RL formalism to
POMDPs, allowing for the optimization of complex functionals over the (unobserved)
state distribution.

Convex Partially Observable Markov Decision Processes (cPOMDP).
A cPOMDP is defined as a tuple MF :“ pS,A,O,P,O,F , T, µq, where
pS,A,O,P,O, T, µq constitutes a standard POMDP without rewards, and F is a
concave utility function bounded by some finite constant F . Thus, a cPOMDP aug-
ments the classical POMDP formulation with a non-linear objective Fp¨q defined
over the latent state distribution.

In the following sections, we will formally define the domain over which the con-
cave utility function F operates, and analyze how this choice influences the resulting
unsupervised pre-training process.

4.1 The Intrinsic Limits of Observations

While investigating the nature and properties of state entropy maximization in cPOMDPs,
first of all we aim to answer to the following question:

Can we maximize the entropy over states getting partial observations only?

4.1.1 Problem Formulation

In the MDP setting observations coincide with the true states of the state of the system,
and Hazan et al. [2019] have formulated the Maximum State Entropy (MSE) objective
as a special case of a Convex RL problem as follows

max
πPΠ̃

!

FpdπSq :“ ´
ÿ

sPS
dπSpsq log dπSpsq “ HpdπSq

)

, (4.1)

where Π̃ Ď ∆A
S is the set of Markovian policies from states to distribution over actions,

and FpdπSq is the convex objective supported on the state distribution “conditioned” on
running the policy π in the MDP.

In principle, we aim to address the same objective (4.1) in cPOMDPs as well. How-
ever, in the cPOMDP setting, we cannot access the true states, which are latent, but we
have to rely on partial observations generated from those states. Thus, a straightforward
adaptation of Eq. (4.1) to cPOMDPs is to define an analogous objective on observations
as a proxy for FpdπSq, which we cannot access. We define the Maximum Observation
Entropy (MOE) objective as follows

max
πPΠ

!

FpdπOq :“ ´
ÿ

oPO
dπOpoq log dπOpoq “ HpdπOq

)

, (4.2)

where Π Ď ∆A
O is the set of Markovian policies from observations to distribution over

actions, and FpdπOq is the convex objective supported on the observation distribution
“conditioned” on running the policy π in the cPOMDP.
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4.1. The Intrinsic Limits of Observations

Similarly, as in MDPs, we aim to find a policy π that maximizes (4.2), but we are
actually interested in achieving a good performance on (4.1). It is easy to see how the
value of (4.2) can depart significantly from the true objective (4.1). Take, for instance,
an observation matrix that maps every state to the same observation Opō|sq “ 1 @s P S.
It is clear that every policy is optimal for MOE in this setting, but the entropy on the
true states can be arbitrarily bad. While those extreme cases are rather unrealistic, the
observation matrix can be truly messed up in practice. We want to understand what are
the settings that are worth addressing with MOE and what kind of guarantees we can
get. As in cMDPs, again, we call the problem (4.2) the infinite trials RL formulation
for cPOMDPs. Indeed, the objective FpdπOq considers the performance that we can
achieve on the average of an infinite number of episodes drawn with π. However, in
practice, we can never draw infinitely many episodes following a policy π. Instead, we
draw a small batch of episodes and obtain an empirical distribution over observation
dn,O „ pπn,O. Thus, we can instead conceive a finite trials RL formulation that is closer
to what is optimized in practice:

max
πPΠ

!

E
dn,O„pπO

Fpdn,Oq

)

:“ Jn,Opπq (4.3)

Remarkably, looking at the single trial formulation (n “ 1), one should notice that
it is compatible with a trajectory-based characterization:

max
πPΠ

!

E
o„pπO,1

FpdOp¨|oqq

)

:“ J1,Opπq, (4.4)

where dOp¨|oq is the empirical distribution induced by the observation trajectory o.
In the following, we will mostly focus on optimizing the latter objective, as it is the
one that we are often asked to optimize in practice: reaching good performance over a
single interaction with the environment is often a more realistic goal than optimizing
the average performance over many episodes.

4.1.2 A Formal Characterization of Maximum Observation Entropy

In this section, we aim to characterize the gap FpdπSq ´ FpdπOq induced by a chosen
policy π, e.g., the policy that maximizes the MOE objective (4.2), when the function
is set to be the entropy function, namely when FpdπOq “ HpdπOq. Due to the POMDP
nature, in which only partial information (if any) on the true states is leaked to the
agent, we cannot provide any general guarantee on the latter gap, which can be as large
as

|HpdπSq ´ HpdπOq| ď maxtlog |S|, log |O|u. (4.5)

Nonetheless, we can provide instance-dependent results that formally characterize the
gap according to notable properties of the observation function in the given instance.
First, we prove the following.

53



i
i

“thesis” — 2025/10/7 — 20:16 — page 54 — #64 i
i

i
i

i
i

Chapter 4. Unsupervised Pre-Training with Partial Observability

Theorem 4.1.1 (Spectral Approximation Bounds). Let MF a cPOMDP and let
π P Π Ď ∆A

O a policy. Let the objective function be the entropy function, FpdπOq “

HpdπOq. Then, it holds

log

ˆ

1

σmaxpO˝´1q

˙

ď HpdπSq ´ HpdπOq ď logpσmaxpOqq.

Proof. First, we derive the upper bound. Starting from HpdπOq, we have

HpdπOq ěH2pd
π
Oq “ log

ˆ

1

}dπO}2

˙

“ log

ˆ

1

}O ¨ dπS}2

˙

(4.6)

ě log

ˆ

1

}O}2 }dπS}2

˙

“ log

ˆ

1

}dπS}2

˙

` log

ˆ

1

}O}2

˙

(4.7)

“HpdπSq ´ log pσmaxpOqq (4.8)

where the first inequality comes from HpV q ě H2pV q for every variable V and the
second inequality from }V ¨ v}2 ď }V}2 }v}2 for every matrix V and vector v. Then,
starting from HpdπSq, we get

HpdπSq “ }dπS}8 log

ˆ

1

}dπS}8

˙

`
ÿ

s:dπSpsqă}dπS}8

dπSpsq log

ˆ

1

dπSpsq

˙

(4.9)

ď }dπS}8H8pdπSq ` p1 ´ }dπS}8q log

ˆ

|S| ´ 1

1 ´ }dπS}8

˙

(4.10)

where the inequality is obtained by letting dπS be uniformly distributed outside of the
entry }dπS}8. By noting H8pV q ď H2pV q and plugging (4.9) back to (4.6) we get

HpdπOq ě
HpdπSq

}dπS}8

`
}dπS}8 ´ 1

}dπS}8

log

ˆ

|S| ´ 1

1 ´ }dπS}8

˙

` log

ˆ

1

σmaxpOq

˙

(4.11)

which gives the result for }dπS}8 Ñ 1.2

To derive the lower bound, we proceed as follows. We start from the HpdπOq defini-
tion to write

HpdπOq “
ÿ

oPO
dπOpoq log

ˆ ř

sPS d
π
Spsq

ř

s d
π
SpsqOpo|sq

˙

ÿ

sPS
dπSpsq (4.12)

ď
ÿ

oPO
dπOpoq

ÿ

sPS
dπSpsq log

ˆ

dπSpsq

dπSpsqOpo|sq

˙

(4.13)

“ HpdπSq `
ÿ

oPO
dπOpoq

ÿ

sPS
dπSpsq log

ˆ

dπSpsq

Opo|sq

˙

(4.14)

ď HpdπSq ` E
o„dπO

E
s„dπS

“

logpO˝´1
po|sqq

‰

(4.15)

ď HpdπSq ` log
´

max
oPO

max
sPS

O˝´1
po|sq

¯

(4.16)

ď HpdπSq ` log
`

σmaxpO˝´1
q
˘

(4.17)
2Note that (4.11) is a tighter version of the upper bound than the one provided in the theorem statement, although it directly

depends on the state distribution dπS beyond spectral properties of O.
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4.1. The Intrinsic Limits of Observations

Figure 4.1: Spectral Bound behavior for two different observation matrices O. MOE values compatible
with MSE values are in orange.

where we exploit dπOpoq “
ř

sPS d
π
SpsqOpo|sq and

ř

sPS d
π
Spsq “ 1 to write (4.12),

we first apply the log-sum inequality and we split the logarithm to get (4.14). Then,
in (4.16), we write the first inequality through the definition of the Hadamard inverse
of O and noting that dπSpsq ď 1 @s P S , we get the second inequality from ErV s ď

maxpV q for any random variable V and the monotonicity of the logarithm. Finally, we
obtain the result (4.17) by }V}8 ď }V}2 “ σmaxpVq for any matrix V.

Theorem 4.1.1 gives bounds on the approximation gap that can be much tighter
than the worst-case gap in Eq. (4.5). The bounds relate the gap to the scale of the
transformation induced by the observation matrix on the distribution of the latent states,
which is captured by the maximum singular value of O and O˝´1, respectively. For
instance, an observation matrix that maps every state to the same observation Opō|sq “

1 @s P S can lead to a larger gap between MOE and MSE, as visualized in the left-hand
side of Figure 4.1.

On the other hand, when the observation matrix maps with high probability each
state to a different observation, the gap is necessarily smaller (see the right-hand side
of Figure 4.1). Notably, both sides of the bound collapse to zero when the observation
matrix is an identity matrix, i.e., when the states are fully observed.

The bounds in Theorem 4.1.1 only focus on spectral properties of the observation
matrix O. In a similar vein, we can provide an analogous characterization based on
information properties of O.

Theorem 4.1.2 (Information Approximation Bound). Let MF a cPOMDP, let
π P Π Ď ∆A

O a policy, and let HpdπO|dπSq “ Es„dπS
rHpOp¨|sqqs. Let the objective

function be the entropy function, FpdπOq “ HpdπOq. Then, it holds

HpdπSq ě HpdπOq ´ HpdπO|dπSq.
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Chapter 4. Unsupervised Pre-Training with Partial Observability

Figure 4.2: Information Approximation Bound behavior for two different dπS . MSE values compatible
with MOE values are in green.

Proof. Starting from FpdπOq definition, we can write

FpdπOq “
ÿ

oPO
dπOpoq log

1

dπOpoq
“

ÿ

oPO

ÿ

sPS
Opo|sqdπSpsq log

1
ř

s1PS Opo|s1qdπSps1q
(4.18)

ď
ÿ

oPO

ÿ

sPS
Opo|sqdπSpsq log

1

Opo|sqdπSpsq
(4.19)

“
ÿ

oPO

ÿ

sPS
Opo|sqdπSpsq log

1

dπSpsq
`

ÿ

oPO

ÿ

sPS
Opo|sqdπSpsq log

1

Opo|sq
(4.20)

“ HpdπSq `
ÿ

sPS
dπSpsqHpOp¨|sqq “ HpdπSq ` HpdπO|dπSq (4.21)

where we get (4.19) by noting
ř

s1PS Opo|s1qdπSps1q ě Opo|sqdπSpsq, we split the loga-
rithm to write (4.20), we let

ř

oPO Opo|sq “ 1 and
ř

sPS d
π
SpsqHpOp¨|sqq “ HpdπO|dπSq

to obtain the result in (4.21).

Theorem 4.1.2 essentially states that the gap between the entropy on observations
and true states is small as long as the policy π induces visits to states where the
observation function has low entropy, which is captured by the term HpdπO|dπSq “

Es„dπS
rHpOp¨|sqqs. When a policy visits states emitting observations with high entropy,

the bound on the gap will be loose, as visualized in the left-hand side of Figure 4.2.
Instead, when the most visited states emit almost deterministic observations, then the
bound on the gap is tighter (see the right-hand side in Figure 4.2). This latter bound is
tight when the true states are fully observed, collapsing the gap to zero.

The combination of Theorems 4.1.1, 4.1.2 yield a nice description of the instances
that is reasonable to address with a MOE approach, i.e., those for which the gap be-
tween the resulting policy and the optimal MSE policy is small thanks to the properties
of the observation matrix. Unfortunately, policies in POMDPs have control over neither
the spectral properties of the observation function nor whether the visited states have
low-entropy observation distributions. In other words, while being descriptive, these
results do not provide any further tool to actively address MSE in cPOMDPs. In the
next section, we reformulate the bound in Theorem 4.1.2 around quantities that can be
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4.1. The Intrinsic Limits of Observations

actively controlled by a policy conditioned on observations and we provide a family of
policy gradient algorithms to learn a MOE policy in those relevant instances.

Before diving into algorithmic solutions, it is interesting to confront the proper-
ties making a state entropy maximization problem on cPOMDPs easy and analogous
requirements for RL in POMDPs. In the latter setting, we generally ask for an ob-
servation function that leaks significant information on the latent state. For instance,
this is captured by a lower bound on the minimum singular value of O in the revealing
POMDP assumption [Liu et al., 2022a]. Instead, in state entropy maximization, we
care less about identifying the latent state, and we can just focus on observations as
long as O does not dramatically jeopardize the underlying state distribution.

4.1.3 Towards Principled Policy Gradients

In the previous section, we analyzed the theoretical guarantees we get on the state
entropy maximization problem by optimizing the MOE objective (4.2), but we did not
yet describe how the latter optimization can be performed. Here we propose a family
of Policy Gradient algorithms [Kober and Peters, 2008] to learn a MOE policy from
sampled interactions with the cPOMDP.

First, we define a space of parametric policies πθ P ΠΘ Ď Π where θ P Θ Ď R|O||A|

are differentiable policy parameters.3 The expression of the MOE objective does not
allow for an easy computation of policy gradients. However, if we take into account
the single-trial formulation of MOE, namely as in Eq. (4.3) by setting n “ 1, we can
easily derive a policy gradient formulation:

Proposition 4.1.3 (Policy Gradient for single-trial cPOMDPs). Let πθ P ΠΘ a para-
metric policy and let the policy scores ∇θ log πθpo, aq “

ř

tPrT s
∇θ log πθparts|ortsq.

We can compute the policy gradient of πθ as

∇θJ1,Opπθq “ E
oa„p

πθ
OA,1

”

∇θ log πθpo, aqFpdOp¨|oqq

ı

, (4.22)

where dOp¨|oq is the empirical distribution induced by the observation trajectory o.

Notably, the trajectory-based objective (4.3) is a lower bound to the MOE objec-
tive (4.2), due to the concavity of the entropy function and the Jensen’s inequality [Mutti
et al., 2022a]. Thus, optimizing for (4.3) guarantees a non-degradation of our initial ob-
jective function (4.2), while it allows for an easy derivation of the gradient ∇θ w.r.t. the
policy parameters, as reported here:

Proof. We write

∇θJ1,Opπθq “ ∇θ

ÿ

poaqPOT ˆAT
pπθ
OA,1poaqFpdOp¨|oqq (4.23)

“
ÿ

poaqPOT ˆAT

´

∇θp
πθ
OA,1poaq

¯

FpdOp¨|oqq (4.24)

“
ÿ

poaqPOT ˆAT
pπθ
OA,1poaq∇θ log p

πθ
OA,1poaqFpdOp¨|oqq (4.25)

“ E
oa„p

πθ
OA,1

“

∇θ log p
πθ
OA,1poaqFpdOp¨|oqq

‰

(4.26)

3See [Deisenroth et al., 2013, Section 1.3] for common choices of parametric policy spaces.
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Chapter 4. Unsupervised Pre-Training with Partial Observability

by exploiting the linearity of the expectation to go from the first to the second equality,
then applying the common log-trick [Kober and Peters, 2008] and finally recognizing
the sum as an expectation again.

To derive the gradient we then have to provide the calculation of the policy scores
∇θ log p

πθ
OA,1poaq. For every π P ΠΘ, we notice that pπθ

OA,1poaq “
ś

tPrT s
Prpot “

ortsqπθpat “ arts|ot “ ortsq and that the only term depending on θ is the policy itself.
By exploiting the properties of the logarithm we have

∇θ log p
πθ
OA,1poaq “

ÿ

tPrT s

∇θ log πθpat “ arts|ot “ ortsq “ ∇θ log πθpoaq (4.27)

which leads to the standard REINFORCE formulation [Williams, 1992].

With the latter result, we can design a policy gradient algorithm based on REIN-
FORCE [Williams, 1992]. The procedure, described in Algorithm 4.1.3, initializes the
policy parameters and then performs several iterations of gradient ascent updates. As
we shall see in the next section, Algorithm 4.1.3 can be a simple yet effective solu-
tion to MOE optimization in various settings. However, the resulting policy can be
underwhelming in domains where the observation matrix is particularly challenging.
While we cannot overcome the barriers established in Theorems 4.1.1, 4.1.2, we can
still exploit additional information on the observation function to further improve the
performance.

Algorithm 4.1.3: PG for MOE (Reg-MOE)

Input: learning rate α, number of iterations K, batch size N
Initialize the policy parameters θ1
for k “ 1, . . . , K do

Sample N trajectories tpoi, aiquiPrNs with the policy πθk
Compute tHpdOp¨|oiqquiPrNs and t∇θ log πθpoiaiquiPrNs

Update the policy parameters in the gradient direction:

θk`1 Ð θk ` α 1
N

ř

iPrNs

∇θ log πθpoiaiq
`HpdOp¨|oiqq´β

ř

oPO d1,OpoqHpOpo|¨qq
˘

end for
Output: the final policy πθK

Known Observation Matrix

With the knowledge of O, we are tempted to directly optimize the lower bound to
HpdπSq provided in Theorem 4.1.2 by trading-off high entropy on observations (HpdπOq)
with the entropy of their emission (HpdπO|dπSq). Unfortunately, we do not have access
to the state distribution dπS to compute the expectation HpdπO|dπSq “ Es„dπS

rHpOp¨|sqqs.
Nonetheless, we can rework the lower bound into an alternative form where all of the
terms are known and can be controlled by a policy conditioned on observations only, as
it demonstrates the following corollary to Theorem 4.1.2.
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Figure 4.3: Actionable Lower Bound behavior for two different dπO. MSE values compatible with MOE
values are in green.

Corollary 4.1.4 (Actionable Lower Bound). Let MF a cPOMDP, let π P Π Ď ∆A
O

a policy, and let HpdπS |dπOq “ Eo„dπO
rHpOpo|¨qqs. Let the objective function be the

entropy function, FpdπOq “ HpdπOq. Then, it holds

HpdπSq ě HpdπOq ´ HpdπS |dπOq ` logpσmaxpOqq. (4.28)

Proof. The result follows through further manipulation of Theorem 4.1.2. We have,

HpdπSq ě HpdπOq ´ HpdπO|dπSq “ HpdπOq ´ HpdπS |dπOq ` HpdπSq ´ HpdπOq (4.29)

ě HpdπOq ´
ÿ

oPO
dπOpoqHpOpo|¨qq ` logpσmaxpOqq (4.30)

where (4.29) is the result of the application of the Bayes rule to the conditional entropy
HpdπO|dπSq and (4.30) follows from the fact that HpdπOq ´HpdπSq ě ´ logpσmaxpOqq due
to Theorem 4.1.1.

From the latter result, we get a lower bound to HpdπSq that can be controlled, as
we flipped the conditioning from HpdπO|dπSq to HpdπS |dπOq, which we can compute by
taking an expectation with the observation distribution. Visually, when a policy visits
observations that can be emitted by many states, the bound on the gap will be looser
(Figure 4.3, left-hand side). When the visited observations are emitted by specific states
with high probability, then the bound on the gap is tighter (Figure 4.3, right-hand side).

Inspired by the rationale provided by this bound, it is then possible to explicitly
account for the effect of dealing with observation only: for every β P p0, 1q, we can
write a regularized version of (4.3) as

max
πPΠ

!

E
dn,O„pπO

Hpdn,Oq ´ β
ÿ

oPO
dn,OpoqHpOpo|¨qq

¯)

:“ J β
n,Opπq (4.31)

which we call Regularized MOE (Reg-MOE), and a slight variation of Alg. 4.1.3 (high-
lighted in the pseudocode) to optimize the regularized objective. In the next section,
we provide an empirical validation of the proposed PG algorithms to describe their re-
spective strengths and weaknesses. Note that the presented algorithms can be further
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Figure 4.4: Well-behaved
observations with
ErHpOqs « 1

Figure 4.5: Challenging
observations with
ErHpOqs « 2.2

Figure 4.6: Challenging
observations with structure

ErHpOqs « 1.85

Entropy on latent states (MSE) achieved by PG for MSE, PG for MOE, and PG for Reg-MOE in
gridworlds with various O. We report the average and 95% c.i. over 16 runs.

enhanced with the same technical solutions of advanced policy optimization algorithms
for the MSE objective [Mutti et al., 2021, Liu and Abbeel, 2021b, Seo et al., 2021,
Yarats et al., 2021] to address continuous and high-dimensional domains.

4.1.4 Numerical Validation

Here we provide a brief numerical validation of the theoretical results provided in Sec-
tion 4.1.2 and the algorithmic solutions proposed in Section 5.3. Especially, we aim to
show that

(a) Optimizing MOE is particularly effective when the observation matrix is “well-
behaved”;

(b) Optimizing MOE is bound to fail when the observation matrix is not “well-behaved”;

(c) Additional knowledge of the observation structure can be sometimes exploited to
improve the performance in the latter challenging cases by optimizing the regu-
larized MOE.

Intuitively, an observation matrix is “well-behaved” when it does not induce a signif-
icant transformation of the state distribution, keeping the approximation gap between
MOE and MSE small. Thanks to Theorems 4.1.1, 4.1.2 we can provide a formal char-
acterization of this property. In the experiments below, we measure the latter through
the average entropy of the observation function ErHpOqs “

ř

sPS HpOp¨|sqq{|S| on
the lines of the information bound in Theorem 4.1.2.

In Figure 4.4 we test (a) by showing that the performance of the algorithms accessing
observations only, i.e., PG for MOE and PG for Reg-MOE, is remarkably close to the
ideal baseline having access to the true states, i.e., PG for MSE. This is due to the low
average entropy of the observation function: Although the agent cannot know its exact
position, maximizing the entropy of observations still leads to a large entropy over the
latent states.

This is not the case in the experiment in Figure 4.5, where the gridworld config-
uration is the same, but the observation function is now more challenging, i.e., more
entropic on average. The significant gap between the algorithms optimizing MOE and
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4.1. The Intrinsic Limits of Observations

the ideal baseline is a testament of (b) and a corroboration of the theoretical limits of the
MOE approach, which are formally provided in Theorems 4.1.1, 4.1.2. PG for MOE
and PG for Reg-MOE can still successfully maximize the entropy over observations,
but cannot avoid a significant mismatch with the resulting entropy over latent states.

However, not all the domains with challenging (i.e., entropic) observations are hope-
less for the MOE approach, especially when we can exploit knowledge on how the ob-
servations are themselves generated. In Figure 4.6, we report a further experiment in
which the observation matrix has a block with very high entropy (in which observations
are almost random) and a block with nearly deterministic observations. PG for MOE
does not exploit the structure of O and cannot distinguish between observations that are
reliable from those that are not.

Instead, the regularization term in PG for Reg-MOE leads to more visitations of
reliable observations (i.e., generated with lower entropy) effectively reducing the gap
with the ideal baseline (PG for MSE), which corroborates both (c) and the result in
Corollary 4.1.4.

Finally, in order to further investigate
the effects of the regularization term, we
considered a different grid-world, whose
visualization is reported on the right. The
observation matrix is designed as a Gaus-
sian Gp0, σ2q over the Manhattan distance
in the blue rooms, while it is determin-
istic (and thus fully revealing) in the red
room. For this experiment, we set the
variance to σ2 “ 1, the regularization
term to β “ 0.3, and the horizon T “ 40. As for the remaining parameters, they
are kept as in the previous experiments. Figure 4.7 shows how the two learned policies
have indeed similar performances. Yet, while the MOE-based policy tries to explore
the environment uniformly, the Reg-Moe one successfully explored the portion of the
grid with lower entropy in the observations, to later address a deeper exploration of the
remaining rooms. This behavior exactly aligns with the role of the regularization term,
which should indeed make the agent prefer observations that are emitted with lower
entropy by the observation function.

As a bottom line, this numerical validation shows that the MOE approach, while not
being a solution to every cPOMDP instance, can still provide a remarkable performance
on domains where the observation matrix is not too challenging or when its knowledge
can be exploited.

Concluding Remarks

In this section, we made a step forward into generalizing state entropy maximization
in cPOMDPs. Specifically, we addressed the problem of learning a policy conditioned
only by observations that target the entropy over the latent states. We proposed the
simple approach of optimizing the entropy over observations in place of latent states
and we formally characterized the instances where it is effective by deriving approx-
imation bounds of the latent objective that depend on the structure of the observation
matrix. Finally, we designed a family of policy gradient algorithms to optimize the
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MSE performances. MOE-based Policy. Reg-MOE-based Policy.

Figure 4.7: Comparison of the policies learned by PG for MOE and PG for Reg-MOE over 2000
episodes. The magnitude of each arrow is proportional to the probability of the policy to choose that

action, after marginalizing over all the possible observations emitted in that state.

observation entropy in practice and to exploit knowledge of the observation structure
when available.

It is worth mentioning that state entropy maximization can find further motivation in
POMDPs beyond its common use in MDP settings. While how those methods can ben-
efit offline data collection and transition model estimation is less obvious under partial
observability, it is worth noting that the reward in a POMDP is usually defined over the
true states, such that pre-training a policy to explore over them is still relevant [Eysen-
bach et al., 2021].

4.2 Explore with Belief

In the previous Section, we noticed how optimizing for objectives over observations
only might be problematic when these are not well behaved, and the mismatch between
the entropy over observations and true states can be significant in relevant domains
(e.g., the rescue operation setting we described above). Additionally, we showed how
in order to recover good performances, the specification of the cPOMDP is needed.

This scenario is motivated by domains in which we can train the agent’s policy on
a simulator of the environment and then deploy the optimal policy in the real world.
However, a simulator is not available in all the relevant applications. Can we still learn
a reasonable policy in those settings? To overcome this limitation, we can instead
compute approximate beliefs from observations [Subramanian et al., 2022] and then
optimize the entropy of the states sampled from the beliefs as a proxy objective that
incorporates all of the information available about the entropy on the true states. In the
following section, we show how this option provides a more scalable alternative than
the trivial use of entropy of observations in general.

4.2.1 Problem Formulation

As stated before, convex RL in general, and state entropy maximization in particular,
is particularly challenging in cPOMDPs as the objective function is defined on a space
to which the agent has no direct access. It is clear that the ideal goal of maximizing the
objective in Eq. 4.1 as in (fully observable) MDPs is far-fetched under these premises.
Addressing convex RL in cPOMDPs includes the following additional and intertwined
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4.2. Explore with Belief

challenges: (a) Defining a proxy objective function compatible with the setting, i.e., on
quantities the agent can observe; (b) Defining a compact policy class such that policies
can be efficiently stored.

In this section, we will build upon the single-trial formulation of the objective, which
is closer to the need for practical applications [Mutti et al., 2022b]. Additionally, we
notice that the common infinite-trials relaxation considered in previous works [Hazan
et al., 2019] is still intractable in cPOMDPs, which leaves minimal benefit over the
single-trial formulation for details.

(a) Proxy Objective Functions. Optimizing Eq. (4.1) is ill-posed in cPOMDPs
without further assumptions because states are not observed. We then seek to design
proxy objectives whose maximization leads to policies with good performance on the
(ideal) original objective as well. The first and most intuitive choice is to formulate an
analogous objective over observations instead of states. Previously, the (single-trial)
Maximum Observation Entropy (MOE) objective of Eq. (4.3) was defined as

max
πPΠ

!

E
o„pπO,1

Hpdp¨|oqq

)

:“ J1,Opπq.

While being rather intuitive, this objective is intrinsically problematic. There can be
significant mismatches between observation and state spaces. When the POMDPs are
under (respectively over) complete [Liu et al., 2022a], i.e., when the number of ob-
servations is less (respectively more) than the number of states, it may be hard to link
entropy over observations to entropy over states. Moreover, even when O “ S, a
random emission function O could jeopardize any estimate of the state entropy that is
based on the entropy of observations. Here, we introduce more reliable proxy objec-
tives in Section 4.2.2, 4.2.3 along with corresponding assumptions on the information
available to the agent.

(b) Deployable Policy Classes. So far, we denoted the policy class as ΠI for
a generic set I of the available information. An essential point to be addressed in
POMDPs is which policy class to use [Cassandra, 1998]. We say a policy class is de-
ployable if its policies are conditioned on the information set I that is available to the
agent at deployment.4 We follow a similar definition of deployable policies as for cen-
tralized training and decentralized executions in multi-agent settings [Albrecht et al.,
2024]. It follows that any policy class over true states is not deployable, and this is the
case for deterministic non-Markovian policies as well [Mutti et al., 2022b]. Yet, other
policy classes are deployable, e.g., over observations, trajectories of observations, and
trajectories of beliefs. Ideally, we want to employ the richer deployable policy class,
which is the space of non-Markovian policies over observations (or, equivalently, over
beliefs). Unfortunately, a policy in this class cannot be efficiently stored in general, so
we will look for restricted classes with more reasonable memory requirements.

4.2.2 Primer: accessing a Simulator

First, we consider a simplified setting where:

Assumption 4.2.1 (Known Model). P,O are fully known in training.
4Even in the case a simulator is available to optimize the policy, we still want to deploy the policy in unknown partially

observable environments in general.
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This setting encompasses the best-case scenario, in which a (white-box) simulator
of the environment is available and the true state of the cPOMDP can be accessed.
Even in this simplified setting, the problem is non-trivial. First, it does not reduce
to the MDP problem, as we need to learn a deployable policy. Secondly, the best
deployable policy class is problematic in terms of memory complexity. Finally, as
the theory demonstrates [Papadimitriou and Tsitsiklis, 1987, Mundhenk et al., 2000],
even solving a known cPOMDP is computationally intractable. These issues drive the
algorithmic choices in the following sense:

1. Memory complexity. The policy class will be restricted to memory-efficient poli-
cies, such that the policy parameters are polynomial in the size of MF .

2. Computational complexity. A first-order method will be employed, i.e., policy
gradient [Williams, 1992, Sutton et al., 1999], to overcome computational hard-
ness.

(1) Unfortunately, the size of TO, TB is exponential in T , which means that policies
over such spaces would require an exponential number of parameters. This leaves the
information sets O,B as viable options. Similarly, the set B of belief states reachable
in T steps can be extremely large even in simple POMDPs.5 Policy classes that are
efficient to store are ΠO and ΠS̃ , i.e., the set of Markovian policies over observations
or believed states. It is known, however, that non-Markovian policies are needed to
optimize the single-trial convex objectives in general [Mutti et al., 2022b]. An option
is to consider the belief, which is a function of the trajectory over states and actions, as
a succinct representation of the history, and then to employ a careful parametrization of
the policy to get memory efficiency. Formally, we introduce the Belief-Averaged (BA)
policy class as Π̄B :“ tπ P Π̄B : πθp¨|bq “ xθ, byu Ď ∆pAq.

(2) The optimization problem over the latter policy class will be addressed via first-
order methods [Williams, 1992], in order to overcome computational hardness. Previ-
ous works have considered policy gradient for MSE in MDPs [Liu and Abbeel, 2021b].
Here, we derive a specialized gradient for the cPOMDP setting when the information
set I is not defined.6

Proposition 4.2.1 ((General) Policy Gradient for single-trial cPOMDPs). Let πθ P ΠI
a policy parametrized by θ P Θ Ď RIA, and let the policy scores ∇θ log πθpiaq “
ř

tPrT s
∇θ log πθparts|irtsq. We can compute the policy gradient of πθ as

∇θJ1,Opπθq “ E
ia„p

πθ
IA,1

”

∇θ log πθpiaqFpdIp¨|iqq

ı

, (4.32)

where I P tS,Ou.

5We can compute B by means of Algorithm B.1 in Appendix B.1.
6The full derivation can be found in Appendix B.1.
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Algorithm 4.2.2: General Reg-PG for cPOMDPs

Input: learning rate α, initial parameters θ1, number of episodes K, batch
size N , information set I P tS,O, S̃u, regularization parameter ρ
for k “ 1 to K do

Sample N trajectories tin „ pπθk unPrNs

Compute the feedbacks tHpdIp¨|inqqunPrNs

Compute tlog πpinqunPrNs

Perform a gradient step:

θk`1 Ð θk ` α
N

ř

nPrNs

log πpinqrHpdIp¨|inqq´ρ
ř

t Hpbnt qs

end for
Output: the last-iterate policy πK

θ

Algorithmic Architecture

It can be seen that optimizing for different objectives, the policy gradient differs only on
the second factor of the product, which we refer to as feedback. Thus, we propose a gen-
eral algorithmic framework, which works for any objective, and mimics the structure of
REINFORCE [Williams, 1992]. The pseudocode is reported in Algorithm 4.2.2.7 The
main loop of the algorithm (2-7) is composed of the main steps: p3q sampleN trajecto-
ries with the current policy, p4q extract the feedbacks coherently to the objective being
optimized, p5q compute the log-policy term and p6q perform a gradient ascent step over
the parameters space.

Smoothness of the Optimization Landscape

We can prove that the considered objectives are locally smooth, making first-order ap-
proaches of the kind described above well-suited for the problem.8

Theorem 4.2.2 (Local Lipschitz Constants). Let π1, π2 P ΠI , let TIpπ1, π2q “ ti P TI :
pπ1piq ą 0 _ pπ2piq ą 0u be the set of realizable trajectories over I P tS,Ou, and let
i‹ “ argmaxiPTIpπ1,π2q FpdIp¨|iqq. It holds

|J1,Ipπ1q ´ J1,Ipπ2q| ď TFpdIp¨|iqqdTV
pπ1, π2q.

A global (but looser) upper bound of the Lipschitz constant can be derived as THmax,
where Hmax is the maximum entropy that can be obtained over the support. These re-
sults provide an interesting insight into how (a bound on) the smoothness constant
behaves, as both the objectives defined over true states or observations have Lipschitz
constants that are not directly dependent on the policies themselves.

7Note that the meaning and role of the regularization parameters and corresponding regularization term, color-highlighted in
the algorithm, will be clarified in the next section.

8The full derivation of the result is in Appendix B.1.
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4.2.3 Scalable Solutions without accessing a Simulator

The Assumption 4.2.1 of having access to the cPOMDP specification is rather restric-
tive and arguably unreasonable in domains where a (white-box) simulator is not avail-
able. To overcome this assumption, we aim to refine the design of our algorithmic so-
lution to work with quantities related to observations only. Luckily, beliefs can still be
computed approximately well without access to the cPOMDP model. Belief approxi-
mation techniques have been extensively studied in the literature (e.g., see Subramanian
et al. [2022] for a summary). Here, we do not delve into the technicalities of the latter,
which are out of the scope of this work, and we instead assume to have access to an
approximated oracle to compute beliefs.

Assumption 4.2.2 (Belief Oracle). Let a P A and o P O. Given an approximate
belief b̂t P ∆S of the true belief bt, an oracle belief approximator gives b̂t`1 such that
}T aopb̂tq ´ b̂t`1}1 ď ϵ.

With the latter, we can follow it as is, computing approximate beliefs instead of the
true beliefs. Yet, we have to change the feedback as we cannot compute the entropy on
the true states. Luckily, the trivial MOE feedback (4.3) is not the only option we have.
We can use the approximate beliefs to reconstruct believed trajectories over states and
then compute the feedbacks as their entropy. We call the latter the Maximum Believed
Entropy (MBE):

max
πPΠI

!

E
b„pπB

E
s̃„pp¨|bq

Fpdp¨|s̃qq

)

:“ J̃1,Spπq, (4.33)

where the update of the belief in pπ is now given by the approximate belief oracle.
Notably, we can extend both Theorem 4.2.1, 4.2.2 to the MBE objective.

Theorem 4.2.3. For a policy πθ P ΠI parametrized by θ P Θ Ď RSA, we have

∇θJ̃1,Spπθq “ E
b„pπB

E
s̃„pp¨|bq

”

∇θ log πθps̃qFpdp¨|s̃qq

ı

, (4.34)

where ∇θ log πθps̃q are defined as in 4.2.1. Additionally, let TBpπ1, π2q “ tb P TB :
pπ1pbq ą 0 _ pπ2pbq ą 0u, b‹ “ argmaxbPTBpπ1,π2q Es̃„pp¨|bq Fpdp¨|s̃qq, and F̄pb‹q “

Es̃„pp¨|bq Fpdp¨|s̃qq, we have

|J̃1,Spπ1q ´ J̃1,Spπ2q| ď T F̄pb‹
qdTV

pπ1, π2q. (4.35)

Interestingly, compared to the other results in Theorem 4.2.2, MBE displays an up-
per bound of the Lipschitz constant that depends on the policies π1, π2 directly (through
b‹). Additionally, F̄pb‹q consists in the best expected believed entropy, which is gener-
ally smaller than Fpdp¨|i‹qq, i P tS,Ou of Theorem 4.2.2.

Objectives Gaps and Hallucinatory Effect

Without 4.2.1, we cannot know the value of the MSE objective anymore. Thus, it is hard
to keep track of the mismatch between what the agent expects the (latent) performance
to be and what it truly is once it is evaluated on the true states of the environment.
However, it is possible to show that the true objective lies in a space explicitly encircled
by the proxies. First, we provide the following instrumental definitions:
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Definition 4.2.1. We define TOpsq “ to P TO : Fpdp¨|oqq ě Fpdp¨|sqqu, T psq “

ts̃ P TS̃ : Fpdp¨|s̃qq ě Fpdp¨|sqqu as the set of trajectories over observations and
believed states, respectively, for which their entropy is higher than the entropy of
a fixed trajectory over true states. We let PpTO|sq “

ř

oPTOpsq
pπpo|sq,PpT |bq “

ř

s̃PT psq
bpsq the cumulative probability of drawing a trajectory form the above sets

and p̄Spsq “ Eb„pπp¨|sq PpT |bq the expected probability of the believed set. Finally,
J1,Opπ|sq “ Eo„pπp¨|sqrFpdp¨|oqqs, J̃1,Spπ|sq “ Eb„pπp¨|sq Es̃„brFpdp¨|s̃qqs the MOE
(MBE) objective for a fixed trajectory on the states.

Then, the following theorem holds:

Theorem 4.2.4 (Proxy Gaps). For a fixed policy π P ΠI , the MSE objective J1,Spπq is
bounded by the MOE objective according to

J1,Spπq ď E
s„p̄S

” 1

PpTO|sq
J1,Opπ|sq

ı

J1,Spπq ě E
s„p̄S

” 1

1 ´ PpTO|sq
J1,Opπ|sq

ı

´ E
s„p̄S

” PpTO|sq

1 ´ PpTO|sq

ı

logO

Analogously, J1,Spπq is bounded by the MBE objective according to

J1,Spπq ď E
s„p̄

” 1

p̄Spsq
J̃1,Spπ|sq

ı

J1,Spπq ě E
s„p̄

” 1

1 ´ p̄Spsq
J̃1,Spπ|sq

ı

´ E
s„p̄

” p̄Spsq

1 ´ p̄Spsq

ı

logS

These results show thaxt the true objective (MSE) is upper/lower bounded by the
proxies depending on the probability to generate trajectories (over observations or be-
lieved states, respectively) with entropy higher than the one of the trajectory that gen-
erated them. We refer to this probability as hallucination probability and to the result-
ing phenomenon as hallucinatory effect. We show in Figure 4.8 a visual represen-
tation of the MBE gaps in 4.2.4. It is evident that for low over-estimation probabil-
ities pp̄S “ 0.02q, the MBE objective is a good lower bound for the MSE objective.
Indeed, one may notice that the MOE gap is potentially looser: In many scenarios
logpOq " logpSq while on the other hand p̄Spsq is the result of an additional expec-
tation with respect to PpTO|sq. On the other hand, it is less so as the hallucination
probability increases. The full derivation of these results can be found in B.1.

The role of hallucinatory effects is crucial. Indeed, when the effect of hallucina-
tions is negligible, the proxy objectives are reasonable lower bounds to the true MSE
objective, and optimizing them guarantees at least a non-degradation of the MSE ob-
jective. The hallucinatory effect, i.e., generating over-entropic trajectories due to the
randomness of the generating process, on either observations or beliefs, can be con-
trolled by reducing the randomness of the generating process itself. Unfortunately,
under Assumption 4.2.2, we cannot control the observation model as done in the pre-
vious section. However, we have partial control over the trajectory of beliefs that are
generated, as they are (approximately) learned and the belief update is conditioned
on the taken action. Thus, we can follow the same rationale and derive a regularized
objective built upon J̃1,Spπq. In particular, we can maintain a valid lower bound to
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Chapter 4. Unsupervised Pre-Training with Partial Observability

Figure 4.8: MBE Proxy gaps: for different hallucination probabilities p̄S and a fixed trajectory s, the
y-axis represents the possible MSE values contained between the upper bound and lower bound as
J̃1,Spπqpπ|sq varies between 0 and the maximum value logpSq (the corresponding MBE values are

plotted over the diagonal to allow a comparisons).

the MBE objective while enforcing the generation of a sequence of low-entropy belief
states b “ pb1, ¨ ¨ ¨ , bT q with the following:

J̃1,Spπq ě J̃1,Spπq ´ ρ E
b„pπ

rHpbqs

ě J̃1,Spπq ´ ρ E
b„pπ

”

ÿ

tPrT s
Hpbtq

ı

“: J̃ ρ
1,Spπq

where the second inequality is due to the sub-additivity of the entropy. We call the
obtained J̃ ρ

1,Spπq MBE with belief regularization (Reg-MBE for short). Then, the policy
gradient for parametrized policies ∇θJ̃ ρ

1,Spπθq for this objective is

∇θJ̃1,Spπθq ´ ρ E
b,s̃a„pπθ

”

∇θ log πθps̃aq
ÿ

tPrT s
Hpbtq

ı

.

It is easy to see that whenever J̃1,Spπq is a good proxy (i.e., a tight lower bound) of the
true MSE objective, then the regularized objective J̃ ρ

1,Spπq will be a reasonable lower
bound as well. Most importantly, the regularization term incentives lower-entropy be-
liefs, which keeps J̃1,Spπq in a region where it approximates MSE well. From these
considerations, a belief-regularized version of the Algorithm 4.2.2 is proposed by sim-
ply modifying how the gradient step in p6q is computed, as can be seen in the regular-
ized version of Algorithm 4.2.2.

4.2.4 Numerical Validation

In this section, we provide an empirical corroboration of the proposed methods and
reported claims. The section is organized as follows: first, we describe the experimen-
tal set-up; then, we compare the performance driven by the proxy objectives (MOE,
MBE, MBE with belief regularization) against the ideal objective (MSE); finally, we
study the impact of belief approximation on MBE-based algorithms (with and without
regularization).

Experimental Set-Up

We consider the following set of finite domains:

(i) A 5 ˆ 5-Gridworld with a single room, where O “ S and the emission matrix O
is such that every row is a (discretized) Gaussian Opo|sq “ N ps, σ2q;
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(ii) A 6ˆ 6-Gridworld with 4 identical rooms, where O “ S and the emission matrix
O is such that every row is a (discretized) Gaussian Opo|sq “ N ps, σ2q;

(iii) A 6 ˆ 6-Gridworld with 4 identical rooms, where O “ t1, 2, 3, 4u and the deter-
ministic emission matrix O such that for every state Opsq is the id of the room in
which the state lies;

(iv) A 6ˆ6-Gridworld with 4 identical rooms, where O “ t1, 2u and the deterministic
emission matrix O such that for every state Opsq is the side of the grid (left rooms
or right rooms) the state lies in.

In all the environments described above, the agent has four actions to take, one for
moving to the adjacent grid cell in each of the coordinate directions. Moving against
a wall undoes the effect of an action. When we say an environment is deterministic
we mean that the agent actions never fail. In a stochastic environment each action
has 0.1 failure probability, which has the equivalent effect of taking one of the other
three actions at random. Finally, we compare the algorithms designed for the MSE,
MOE, MBE objectives presented in previous sections.9 Irrespective of the optimized
objective, their performance is evaluated on the true state entropy (Equation 5.2),
which is the ultimate target of state entropy maximization in cPOMDPs. All of the
algorithms optimize a policy within the BA class Π̄B. A visualization of the described
environment is provided in C.2, while the choice of the experimental parameters is
discussed in C.2. C.2 provides a finer analysis of the choice of the policy class.

MSE in cPOMDP with the Proxy Objectives

In this section, we compare the performance obtained by Algorithm 4.2.2 specialized
for the different proxy objectives. For the sake of clarity, here we assume the belief
updates to be computed exactly, while we study the impact of the belief approxima-
tion in the next section. 4.9 shows that all of the objectives works equally well in easy
settings, e.g., deterministic transitions and small observation noise. However, major
differences arise when considering harder settings. The MOE objective is sensitive
to the quality of the observations, which is evident from the performance degradation
in Figures 4.10, 4.11, 4.12. Instead, MBE objectives are remarkably robust to their
(diminishing) quality. MBE with belief regularization (Reg-MBE) always performed
better than the non-regularized version, showing faster convergence or better final per-
formance. In Figure 4.13, we see that stochastic transitions are also arduous for MOE
and MBE. MBE with belief regularization proved to be better. Interestingly, the true
state entropy improvement happens concurrently with the optimization of the regular-
ization term (4.14). Unsurprisingly, optimizing the MSE objective leads to the best
performance in most cases, as a testament that whenever the cPOMDP specification is
available in simulation, it is worth training the policy we seek to deploy on the true
state entropy. Interestingly, in some limit cases with extreme disentanglement between
the observations and the true MSE objective (Figure 4.15), the belief-regularized MBE
proxy performed slightly better. Finally, Figure 4.14 shows how the MBE is severely
hallucinated, an effect that is mitigated with belief regularization.

9While we only compare algorithms of our design, we note that we could not find any previous algorithm addressing state
entropy maximization in cPOMDPs.
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Figure 4.9: Env. i, det.,
0.1

Figure 4.10: Env. i, det.,
10

Figure 4.11: Env. ii, det,
10

Figure 4.12: Env. iii,
det., n.a.

Figure 4.13: Env. i,
stoc., 10

Figure 4.14: Env. i,
stoc., 10

Figure 4.15: Env. iv,
det., n.a.

Figure 4.16: Env. iv,
det., n.a.

True state entropy (or regularization term) obtained by Algorithm 4.2.2 specialized for the feedbacks
MSE, MOE, MBE, MBE with belief regularization (Reg-MBE). For each plot, we report a tuple
(environment, transition noise, observation variance) where the latter is not available (n.a.) when
observations are deterministic. For each curve, we report the average and 95% c.i. over 16 runs.

Figure 4.17: Env. i, det.,
10

Figure 4.18: Env. i,
stoc., 10

Figure 4.19: Env. iii,
det., n.a.

Figure 4.20: Env. iv,
det, n.a.

True state entropy obtained by Algorithm 4.2.2 with MBE, MBE with belief regularization (MBE with
Reg) feedbacks under different levels of approximation noise s2. For each plot, we report a tuple
(environment, transition noise, observation variance) where the latter is not available (n.a.) when
observations are deterministic. For each curve, we report the average and 95% c.i. over 16 runs.

The Impact of Belief Approximation

In the previous section, we compared the algorithms in an ideal setting in which the
belief is approximated exactly. Here we instead consider the effect of the belief ap-
proximation on the same experiments. Especially, to keep full generality of our re-
sults, we perturb the exact beliefs with an entry-wise Gaussian noise (with variance
s2 “ t0, 0.01, 0.03, 0.04u respectively), so that our results do not apply to a single be-
lief approximator but any approximator with a bounded error.10 All Figures from 4.17
to 4.20 provide two important evidences. First, when good belief approximators are
available, the resulting performance is strikingly similar to the ideal setting with ex-
act beliefs. Secondly, MBE with belief regularization is significantly more robust to
perturbations, hinting that mitigating hallucination also alleviates the impact of the ap-
proximation error to some extent.

10For the sake of clarity, here we report the variance of the perturbation instead of the approximation.
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Concluding Remarks

In this section, we expanded over the topic of state entropy maximization problem in
cPOMDPs towards more scalable solutions. In particular, we choose a convenient sub-
class of non-Markovian policies that retain compressed information of history with-
out incurring unreasonable memory requirements, namely belief-conditioned policies.
Additionally, we showed how such scalable solutions might risk to incur into hallu-
cinations, while trying to optimize thought a learnt belief-representation. Finally, we
designed practical first-order algorithms, which are based on policy gradient, to over-
come the inherent non-convexity of the considered objective functions.
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CHAPTER5
Unsupervised Pre-Training with Multiple Agents

Multi-Agent Reinforcement Learning [MARL, Albrecht et al., 2024] has recently demon-
strated promising results in learning complex behaviors in the presence of multiple
agents, spanning from coordination [Samvelyan et al., 2019], strategic planning under
imperfect information [Perolat et al., 2022], up to even emergent economic behavior
like trading [Johanson et al., 2022]. However, as with single-agent RL, much of the
research in MARL still focuses on tabula rasa learning-starting from scratch without
leveraging any prior knowledge, offline data, or policy pre-training.

While this approach is general, it poses significant limitations when applied to real-
world scenarios, where training from scratch is often slow, expensive, and largely un-
necessary [Agarwal et al., 2022]. Some progress has been made in the multi-agent
domain, particularly in areas like ad hoc teamwork [Mirsky et al., 2022] and zero-shot
coordination [Hu et al., 2020], which aim to build more adaptable agents. Yet, the role
of unsupervised pre-training in MARL remains largely unexplored. The only notable
exception is Jiang et al. [2022], which proposes initializing policies with strong inter-
agent interaction, though without offering a formal theoretical framework for doing
so.

This chapter investigates how unsupervised pre-training techniques can be extended
to handle multiple agents, through the lens of state entropy maximization. First, we
introduce a new framework for multi-agent state entropy maximization, which gener-
alizes the concept of state entropy maximization in single-agent settings to the multi-
agent contexts. Them we address the framework by fist investigating alternative formu-
lations, theoretically characterizing what are the positives and negatives and highlight-
ing how the problem, even if seeming rather intuitive in theory, is actually challenging
in practice. Then, we present a scalable, decentralized, trust-region policy search algo-
rithm to address the problem in practical settings. Finally, we provide numerical vali-
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dations to both corroborate the theoretical findings and pave the way for unsupervised
MARL via state entropy maximization in challenging multi-agent settings, showing
that optimizing for a specific objective, namely mixture entropy, provides an excellent
trade-off between tractability and performances.

This chapter is based on the paper "Towards Principled Unsupervised Multi-Agent
Reinforcement Learning", co-authored with M. Mutti and M. Restelli and published
at NeurIPS 2025. In order to strengthen some intuitions, we included some results
(namely, Th. 5.1.1 and Fact 5.2.2) about parallel non-interacting agents from "Enhanc-
ing Diversity in Parallel Agents: A Maximum State Entropy Exploration Story", co-
authored with V. De Paola, M. Mutti, and M. Restelli, published at ICML 2025.1

Convex Formulation of Markov Games

As a first step, we introduce a generalization of MGs that allows the optimization of
more expressive objectives over the state distribution, analogous to what was introduced
for MDPs in Section 2. This generalized framework forms the foundation for our study
of unsupervised pre-training in multi-agent systems.

Convex Markov Games (cMGs).
A cMG is defined as a tuple MF :“ pN ,S,A,P,F , µ, T q, where
pN ,S,A,P, µ, T q represents a Markov Game without rewards, and F is an F -
bounded concave utility function with F ă 8. In other words, a cMG is a Markov
Game equipped with a (potentially non-linear) utility function Fp¨q.

Gemp et al. [2025] recently introduced such a convex generalization of MGs that
consists in a MG equipped with (non-linear) functions of the stationary joint state dis-
tribution Fpdπq. We expand over this definition, by noticing that state entropy maxi-
mization can be casted as solving a cMG equipped with an entropy functional, namely
Fp¨q :“ Hp¨q.

Additionally, when per-agent transitions are independent from the presence of other
agents, namely the transition function P is such that for any agent i P N , Pps1 | s, aq “

Pps1
i | si, aiqPps1

´i | s´i, a´iq, we refer to the cMG as a convex Parallel MDP (cPMDP),
a convex generalization of PMDPs [Sucar, 2007].

In the sections that follow, we discuss how to properly define the domain (support)
of the concave utility function and explore how this design choice impacts the effec-
tiveness and structure of the resulting pre-training phase.

5.1 Problem Formulation

This section addresses the first of the research questions:

Can we formulate in a principled way unsupervised pre-training
via state entropy maximization in MARL as well?

In fact, when a reward function is not available, the core of the problem resides in
finding a well-behaved problem formulation coherent with the task. How much should

1A complete reference can be found in the bibliography [Zamboni et al., 2025b, De Paola et al., 2025]
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the agents coordinate? How much information should they have access to? Different
answers depict different objectives.

Joint Objectives. The first and most straightforward way to formulate the problem is
to define it as in the MDP setting, with the joint state distribution simply taking the
place of the single-agent state distribution. In this case, we define a Joint objective,
consisting of

max
π“pπiPΠiqiPr|N |s

!

ζ8pπq :“ Fpdπq

)

(5.1)

max
π“pπiPΠiqiPr|N |s

!

ζKpπq :“ E
dK„pπK

FpdKq

)

(5.2)

In state entropy maximization tasks, i.e. by setting Fp¨q :“ Hp¨q, an optimal (joint)
policy will try to cover the joint state space as uniformly as possible, either in expecta-
tion or over a finite number of trials respectively. In this, the joint formulation is rather
intuitive as it describes the most general case of multi-agent exploration. Moreover, as
each agent sees a difference in performance explicitly linked to others, this objective
should be able to foster coordinated exploration. As we will see, this comes at a price.

Disjoint Objectives. One might look for formulations more coherent with a multi-agent
setting. The most trivial option is to design a disjoint counterpart of the objectives, that
means to define a set of functions supported on per-agent state distributions rather than
joint distributions. This intuition leads to Disjoint objectives:

!

max
πiPΠi

ζ i8pπi, π´i
q :“ Fpdπ

i,π´i

i q

)

iPr|N |s
(5.3)

!

max
πiPΠi

ζ iKpπi, π´i
q :“ E

dK„pπ
i,π´i

K

FpdK,iq

)

iPr|N |s
(5.4)

According to these objectives, each agent will try to maximize her own marginal
state entropy separately, neglecting the effect of her actions over others performances.
In other words, we expect this objective to hinder the potential coordinated exploration,
where one has to take as step down as so allow a better performance overall.

Mixture Objectives. At last, we introduce a problem formulation that will be later prove
capable of uniquely taking advantage of the structure of the problem. In order to do so,
we first introduce the following:

Assumption 5.1.1 (Uniformity). The agents have the same state spaces, namely Si “

Sj “ S̃, @pi, jq P N ˆ N . 2

Under this assumption, from now on we will drop the agent subscript when referring
to the per-agent states, and use S̃ instead. Interestingly, this assumptions allows us to
define a particular distribution, namely:

d̃πps̃q :“
1

|N |

ÿ

iPr|N |s

dπi ps̃q P ∆S̃ . (5.5)

2One should notice that even in cMGs where this is not (even partially) the case, the assumption can be enforced by padding
together the per-agent states.
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Figure 5.1: The interaction on the left induces different (empirical) distributions: marginal
distributions for agent 1 and agent 2 over their respective states; a joint distribution over the

product space; a mixture distribution over a common space, defined as the average. The mixture
distribution is usually less sparse.

We refer to this distribution as mixture distribution, given that it is defined as a
uniform mixture of the per-agent marginal distributions. Intuitively, it describes the
average probability over all the agents to be in a common state s̃ P S̃ , in contrast with
the joint distribution that describes the probability for them to be in a joint state s, or the
marginals that describes the probability of each one of them separately. In Figure 5.1
we provide a visual representation of these concepts.

Similarly to what happens for the joint distribution, one can define the empirical dis-
tribution induced byK episodes as d̃Kps̃q “ 1

|N |

ř

iPr|N |s
dK,ips̃q and d̃π “ Ed̃K„pπK

rd̃Ks.
The mixture distribution allows for the definition of the Mixture objectives, in their in-
finite and finite trials formulations respectively:

max
π“pπiPΠiqiPr|N |s

!

ζ̃8pπq :“ Fpd̃πq

)

(5.6)

max
π“pπiPΠiqiPr|N |s

!

ζ̃Kpπq :“ E
d̃K„pπK

Fpd̃Kq

)

(5.7)

When this kind of objectives is employed in state entropy maximization, the entropy
of the mixture distribution decomposes as

Hpd̃πq “
1

|N |

ÿ

iPr|N |s

Hpdπi q `
1

|N |

ÿ

iPr|N |s

DKLpdπi ||d̃πq

and one remarkable scenario arises: Agents follow policies possibly inducing lower dis-
joint entropies, but their induced marginal distributions are maximally different. Thus,
the average entropy remains low, but the overall mixture entropy is high due to diversity
(i.e., high values of the KL divergences). This scenario has been referred to in Kolchin-
sky and Tracey [2017] as the clustering scenario and, in the following, we will provide
additional evidences why this scenario is particularly relevant.

Further Intuitions on the Advantages of Mixture Distributions

The advantages of employing mixture distribution in scenarios involving multiple in-
teracting agents will be the main object of the remaining of the chapter. Yet, it is pos-
sible to derive an intuitive yet grounded justifications by looking at the concentration
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properties of entropy functionals when agents act over the same environment without
interacting with each other, a scenario encompassed by cPMDPs:

Theorem 5.1.1. Let dπ be the (categorical) distribution induced by π over the
finite set S with |S| “ S, and let dK be the empirical distribution obtained from
K independent samples drawn from dπ. Then, for any ϵ ą 0, the following bound
holds:

P pHpdπq ´ HpdKq ą ϵq ď 2S exp

ˆ

´K ¨
ϵ2Varpdπq

2S3H2pdπq

˙

,

where HpdKq and Hpdπq denote the entropy of the empirical and true distribu-
tions, respectively, and Varpdπq “

ř

sPrSs
dπpsqp1 ´ dπpsqq is the variance of a

random variable associated with the categorical distribution dπ. Furthermore, to
ensure this concentration with confidence 1 ´ δ, the number of samples n must
satisfy the following lower bound:

K ě
2S3H2pdπq

ϵ2Varpdπq
¨ ln

2S

δ
.

This theorem establishes an upper bound on the probability that the entropy differ-
ence between the true and empirical distributions exceeds ϵ. Specifically, the prob-
ability of large deviations between these two entropies decreases exponentially with
K, with the rate of convergence influenced by the entropy of the true distribution dπ.
Notably, as limHpdπqÑ0

H2pdπq

Varpdπq
“ 0, distributions with lower entropy require fewer sam-

ples for concentration, implying they are easier to approximate empirically. This result
suggests a key advantage of state entropy maximization: when multiple agents explore
the environment simultaneously, each can focus on different regions of the state space.
As a result, they induce distributions with lower entropy compared to a single policy
covering the entire space.

5.2 A Formal Characterization of Multi-Agent State Entropy Maximiza-
tion

In the previous section, we provided a principled problem formulation of multi-agent
state entropy maximization through an array of different objectives. In this section, we
address the second research question:

How are different formulations related? Do crucial theoretical differences
emerge?

First of all, we show that if we look at state entropy maximization tasks, i.e. the
ones defined by setting the functional Fp¨q :“ Hp¨q, all the objectives in infinite-trials
formulation can be elegantly linked one to the other though the following result:

77



i
i

“thesis” — 2025/10/7 — 20:16 — page 78 — #88 i
i

i
i

i
i

Chapter 5. Unsupervised Pre-Training with Multiple Agents

Lemma 5.2.1 (Entropy Mismatch). For every cMG MH equipped with an entropy
functional, for a fixed (joint) policy π “ pπiqiPN the infinite-trials objectives are
ordered according to:

Hpdπq

|N |
ď

1

|N |

ÿ

iPr|N |s

Hpdπi q ď Hpd̃πq

Hpd̃πq ď sup
iPr|N |s

Hpdπi q ` logp|N |q ď Hpdπq ` logp|N |q

The full derivation of these bounds is reported in Appendix B.2. This set of bounds
prescribe that the difference in performances over infinite-trials objective for the same
policy can be generally bounded as a function of the number of agents. In particular,
disjoint objectives generally provides poor approximations of the joint objective from
the point of view of the single-agent, while the mixture objective is guaranteed to be
a rather good lower bound to the joint entropy as well, since its over-estimation scales
logarithmically with the number of agents.

It is still an open question how hard it is to actually optimize for these objectives.
Now, while cMGs are a novel interaction framework, whose general properties are far
from being well-understood, they surely enjoy some nice properties. In particular, as
commonly done in Potential Markov Games [Leonardos et al., 2022], it is possible to
exploit the fact that performing Policy Gradient [PG, Sutton et al., 1999, Peters and
Schaal, 2008b] independently among the agents is equivalent to running PG jointly,
when this is done over the same common objective (see Appendix B.2). This allows us
to provide a rather positive answer, here stated informally and extensively discussed in
Appendix B.2:

Fact 5.2.1 ((Informal) Efficiency of Independent Policy Gradient). Under proper as-
sumptions, for every cMG MF , independent Policy Gradient over infinite trials non-
disjoint objectives via centralized-information policies of the form π “ pπi P ∆Ai

S qiPr|N |s

converges fast.

This result suggests that PG should be generally enough for the infinite-trials op-
timization, and thus, from a certain point of view, these problems might not be of so
much interest.

Interestingly, a similar result can be indeed derived for cPMDPs as well, in which
a parallel formulation of the MaxEnt Algorithm [Hazan et al., 2019] called Parallel
MaxEnt can be shown not only to be efficient, but also to enjoy an acceleration in
convergence due to the presence of multiple and parallel agents. Here, we state the
result informally, while an extensive discussion can be found in Appendix B.2:

Fact 5.2.2 ((Informal) Efficiency of Parallel MaxEnt). Under proper assumptions, for
every cPMDP MF , Parallel MaxEnt over infinite trials objectives achieves near opti-
mality by using a number of samples from the environment that scales inversely with
the number of agents.

However, convex MDP theory has outlined that optimizing for infinite-trials objec-
tives might actually lead to extremely poor performances as soon as the policies are
deployed over just a handful of trials, i.e. in almost any practical scenario [Mutti et al.,
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2023]. We show that this property transfers almost seamlessly to cMGs as well, with
interesting additional takeaways:

Theorem 5.2.2 (Objectives Mismatch in cMGs). For every cMG MF equipped
with a L-Lipschitz function F (see Ass. 2.3.1), let K P N` be a number of evalu-
ation episodes/trials, and let δ P p0, 1s be a confidence level, then for any (joint)
policy π “ pπi P ΠiqiPr|N |s, it holds that

|ζKpπq ´ ζ8pπq| ď LT

c

2|S| logp2T {δq

K
,

|ζ iKpπq ´ ζ i8pπq| ď LT

d

2|S̃| logp2T {δq

K
,

|ζ̃Kpπq ´ ζ̃8pπq| ď LT

d

2|S̃| logp2T {δq

|N |K
.

The full derivation of these bounds is reported in Appendix B.2. In general, this set
of bounds confirms that infinite and finite trials objectives might be extremely differ-
ent, and thus optimizing the infinite-trials objective might lead to unpredictable perfor-
mance at deployment, whenever this is done over a handful of trials. This property is in-
herently linked to the convex nature of convex MDPs, and Mutti et al. [2023] introduces
it to highlight that the concentration properties of empirical state-distributions [Weiss-
man et al., 2003] allow for a nice dependency on the number of trials in controlling the
mismatch. In multi-agent settings, the result portraits a more nuanced scene:

(i) The mismatch still scales with the cardinality of the support of the state distribu-
tion, yet, for joint objectives, this quantity scales very poorly in the number of agents.3

Thus, even though optimizing infinite-trials joint objectives might be rather easy in the-
ory as Fact 5.2.1 suggests, it might result in poor performances in practice. On the
other hand, the quantity is independent of the number of agents for disjoint and mixture
objectives.

(ii) Looking at mixture objectives, the mismatch scales sub-linearly with the number
of agents N . Thus, in some sense, the number of agents has the same role as the
number of trials: the more the agents the less the deployment mismatch, and at the
limit, with N Ñ 8, the mismatch vanishes completely.4 In other words, this result
portraits a striking difference with respect to joint objectives: when facing state entropy
maximization over mixtures, a reasonably high number of agents compared to the size
of the state-space actually helps, and simple policy gradient over mixture objectives
might be enough.

Remarks. One should notice that the results of Fact 5.2.1 are valid only for specific
classes of policies, namely centralized-information policies of the form π “ pπi P

∆Ai

S qiPr|N |s. To our knowledge, no guarantees are known for decentralized-information

3Indeed, in the case of product state-spaces S “ ˆiPr|N |sSi the cardinality scales exponentially with the number of agents
|N |

4One should note that in this scenario, though, all the bounds of Lemma 5.2.1 linking different objectives become vacuous.
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policies even in linear MGs. Interestingly though, the finite-trials formulation do of-
fer additional insights on the behavior of optimal decentralized-information policies, a
striking difference with respect to both the infinite-trial objectives and the linear MG
interaction model in general. The interested reader can learn more about this in Ap-
pendix B.2.

5.3 Trust Region for Exploration in Practice

As stated before, a core drive of this work is addressing multi-agent state entropy max-
imization in practical scenarios. Yet, these cases are also the ones in which performing
PG of infinite-trials objectives provide poor performance guarantees at deployment. In
other words, here we address the third research question, that is:

Can we explicitly pre-train a policy for state entropy maximization in practical
multi-agent scenarios?

To do so, our attention will focus on the finite trials objectives explicitly, more
specifically on the single-trial case with K “ 1. Remarkably, it is possible to directly
optimize the single-trial objective in multi-agent cases with decentralized algorithms:
we introduce Trust Region Pure Exploration (TRPE), the first decentralized algorithm
that explicitly addresses single-trial objectives in cMGs, with state entropy maximiza-
tion as a special case. TRPE takes direct inspiration from trust-region based methods as
TRPO [Schulman et al., 2015] for various reasons: a small change into the policy pa-
rameters of each agent may drastically change the value of the objective function, i.e.,
the optimization landscape is often brittle. The use of the trust region, like in TRPE,
allows for accounting for this effect, as previous works have connected the trust region
with the natural gradient [Pajarinen et al., 2019]; Additionally, trust-region methods
recently enjoyed an ubiquitous success and interest for their surprising effectiveness in
multi-agent problems [Yu et al., 2022].

In fact, trust-region analysis nicely align with the properties of finite-trials formula-
tions and allow for an elegant extension to cMGs through the following.

Definition 5.3.1 (Surrogate Function over a Single Trial). For every cMG MF equipped
with a L-Lipschitz function F (see Ass. 2.3.1), let d1 be a general single-trial distribu-
tion d1 “ td1, d1,i, d̃1u, then for any per-agent deviation over policies π “ pπi, π´iq,
π̃ “ pπ̃i, π´iq, it is possible to define a per-agent Surrogate Function Lipπ̃{πq of the
form

Li
pπ̃{πq “ E

d1„pπ1

ρiπ̃{πFpd1q,

where ρi is the per-agent importance-weight coefficient ρiπ̃{π “ pπ̃1{pπ1 “
ś

tPrT s

π̃ipairts|sirtsq
πipairts|sirtsq

,

such that for ζ1 P tζ1, ζ
i
1, ζ̃1u.
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Algorithm 5.3: Trust-Region Pure Exploration (TRPE)

Input: exploration horizon T , number of trajectories N , trust-region thresh-
old δ, learning rate η.
initialize θ “ pθiqiPr|N |s

for epoch = 1, 2, . . . , until convergence do
Collect N trajectories with πθ “ pπi

θiqiPr|N |s.
for agent i “ 1, 2, . . . , concurrently do

Construct datasets Di “ tpsin, a
i
nq, ζn1 unPrNs

θi Ð IS-OptimizerpDi, θiq
end for

end for
Output: (joint) policy πθ “ pπi

θiqiPr|N |s

IS-Optimizer

Input: Dataset Di, sampling parameter θi.
Initialize h “ 0 and θih “ θi

while DKLpπi
θih

}πi
θi0

q ď δ do
Compute L̂ipθih{θi0q via IS
Perform Gradient step θih`1 “ θih ` η∇θih

L̂ipθih{θi0q
h Ð h ` 1

end while
Output: parameters θh

From this definition, it follows that the trust-region algorithmic blueprint of Schul-
man et al. [2015] can be directly applied to single-trial formulations, with per-agent
policies within a parametric space of stochastic differentiable policies Θ “ tπi

θi : θ
i P

Θi Ď Rqu. In practice, KL-divergence is employed for greater scalability provided a
trust-region threshold δ, we address the following optimization problem for each agent:

max
θ̃iPΘi

Li
pθ̃i{θiq,

s.t. DKLpπi
θ̃i

}πi
θiq ď δ

where we simplified the notation by letting Lipθ̃i{θiq :“ Lipπi
θ̃i
, π´i

θ´i{πθq.5

The main idea then follows from noticing that the surrogate function in Defini-
tion 5.3.1 consists of an Importance Sampling (IS) estimator [Owen, 2013], and it
is then possible to optimize it in a fully decentralized and off-policy manner, simi-
larly to what was done in Metelli et al. [2020] for MDPs and in Mutti and Restelli
[2020] for convex MDPs. More specifically, given a pre-specified objective of interest
ζ1 P tζ1, ζ

i
1, ζ̃1u, agents sample N trajectories tpsn, anqunPrNs from the environment by

following a (joint) policy with parameters θ0 “ pθi0, θ
´i
0 q. They then compute the values

of the objective for each trajectory, building separate datasets Di “ tpsin, a
i
nq, ζn1 unPrNs.

Each agent uses her dataset to compute the Monte-Carlo approximation of the Surro-

5More precisely, Lipπi
θ̃i
, π´i

θ´i{πθq “ E
d1„p

πθ
1

p
πi
θ̃i

,π´i

θ´i

1 {p
πi
θi

,π´i

θ´i

1 Fpd1q.
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gate Function, namely:

L̂i
pθih{θi0q “

1

N

ÿ

nPrNs

ρi,n
θih{θi0

ζn1 ,

where ρi,n
θih{θi0

“
ś

tPrT s
πi
θih

pai
nrts|sinrtsq{πi

θi0
pai

nrts|sinrtsq and ζn1 is the plug-in estimator
of the entropy based on the empirical measure d1 [Paninski, 2003]. Finally, at each
off-policy iteration h, each agent updates its parameter via gradient ascent θih`1 Ð

θih ` η∇θih
L̂ipθih{θi0q until the trust-region boundary is reached, i.e., when it holds

DKLpπi
θ̃i

}πi
θiq ą δ. The pseudo-code of TRPE is reported in Algorithm 5.3.

Limitations. The main limitations of the proposed methods are two. First, the Monte-
Carlo estimation of single-trial objectives might be sample-inefficient in high-dimensional
tasks. However, more efficient estimators of single-trial objectives remain an open
question in single-agent convex RL as well, as the convex nature of the problem hinders
the applicability of Bellman operators. Secondly, the plug-in estimator of the entropy
is applicable to discrete spaces only, but designing scalable estimators of the entropy in
continuous domains is usually a contribution per se [Mutti et al., 2021].

5.4 Numerical Validation

In this section, we address the last research question, that is:

Do crucial differences emerge in practice? Does this have
an impact on downstream tasks learning?

by providing empirical corroboration of the findings discussed so far. Especially, we
aim to answer the following questions: (a) Is Algorithm 5.3 actually capable of opti-
mizing finite-trials objectives? (b) Do different objectives enforce different behaviors,
as expected from Section 5.1? (c) Does the clustering behavior of mixture objectives
play a crucial role? If yes, when and why?

Throughout the experiments, we will compare the result of optimizing finite-trial ob-
jectives, either joint, disjoint, mixture ones, through Algorithm 5.3 via fully decentralized-
information policies. The experiments will be performed with different values of the
exploration horizon T , so as to test their capabilities in different exploration efficiency
regimes.6

Experimental Domains

The experiments were performed on two domains. The first is a notoriously difficult
multi-agent exploration task called secret room [MPE, Liu et al., 2021],7 referred to as
Env. (i). In such task, two agents are required to reach a target while navigating over
two rooms divided by a door. In order to keep the door open, at least one agent have
to remain on a switch. Two switches are located at the corners of the two rooms. The
hardness of the task then comes from the need of coordinated exploration, where one

6The exploration horizon T , rather than being a given trajectory length, has to be seen as a parameter of the exploration phase
which allows to tradeoff exploration quality with exploration efficiency.

7We highlight that all previous efforts in this task employed centralized-information policies. We are interested on the role of
the entropic feedback in fostering coordination rather than full-state conditioning, then maintaining fully decentralized-information
policies instead.
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Figure 5.2: Joint Entropy.
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Figure 5.3: Mixture Entropy.

Mixture Joint

Disjoint Uniform

Single-trial Joint and Mixture Entropy induced by mixture, joint or disjoint objective optimization along
a T “ 50 horizon. (Right) State Distributions of two agents induced by different learned policies.

We report the average and 95% c.i. over 4 runs.

agent allows for the exploration of the other. The second is a simpler exploration task
yet over a high dimensional state-space, namely a 2-agent instantiation of Reacher [Ma-
MuJoco, Peng et al., 2021], referred to as Env. (ii). Each agent corresponds to one joint
and equipped with decentralized-information policies conditioned on her own states.
In order to allow for the use of plug-in estimator of the entropy [Paninski, 2003], each
state dimension was discretized over 10 bins.

State-Entropy Maximization

As common for the unsupervised RL framework [Hazan et al., 2019, Laskin et al., 2021,
Liu and Abbeel, 2021b, Mutti et al., 2021], Algorithm 5.3 was first tested in her ability
to optimize for state entropy maximization objectives, thus in environments without
rewards. First, we report the results for a short, and thus more challenging, exploration
horizon pT “ 50q over Env. (i), as it is far more interpretable. Other experiments
with longer horizons or over Env. (ii) can be found in Appendix C.3. Interestingly, at
this challenging exploration regime, when looking at the joint entropy in Figure 5.2,
joint and disjoint objectives perform rather well compared to mixture ones in terms
of induced joint entropy, while they fail to address mixture entropy explicitly, as seen
in Figure 5.3. On the other hand mixture-based objectives result in optimizing both
mixture and joint entropy effectively, as one would expect by the bounds in Th. 5.2.1.
By looking at the actual state visitation induced by the trained policies, the difference
between the objectives is apparent. While optimizing joint objectives, agents exploit
the high-dimensionality of the joint space to induce highly entropic distributions even
without exploring the space uniformly via coordination; the same outcome happens
in disjoint objectives, with which agents focus on over-optimizing over a restricted
space loosing any incentive for coordinated exploration. On the other hand, mixture
objectives enforce a clustering behavior and result in a better efficient exploration.

Policy Pre-Training via State-Entropy Maximization

More interestingly, we tested the effect of pre-training policies via different objec-
tives as a way to alleviate the well-known hardness of sparse-reward settings, either
throught faster learning or zero-short generalization. In order to do so, we employed
a multi-agent counterpart of the TRPO algorithm [Schulman et al., 2015] with differ-
ent pre-trained policies. First, we investigated the effect on the learning curve in the
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Figure 5.4: MA-TRPO with
TRPE Pre-Training (Env. (i),

T “ 150).
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Figure 5.5: MA-TRPO with
TRPE Pre-Training (Env. (i),

T “ 50).
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Figure 5.6: MA-TRPO with
TRPE Pre-Training (Env. (ii),

T “ 100).

Effect of pre-training in sparse-reward settings.(left) Policies initialized with either Uniform or TRPE
pre-trained policies over 4 runs over a worst-case goal. (rigth) Policies initialized with either
Zero-Mean or TRPE pre-trained policies over 4 runs over 3 possible goal state. We report the

average and 95% c.i.

hard-exploration task of Env. (i) under long horizons (T “ 150), with a worst-case
goal set on the the opposite corner of the closed room. Pre-training via mixture objec-
tives still lead to a faster learning compared to initializing the policy with a uniform
distribution. On the other hand, joint objective pre-training did not lead to substantial
improvements over standard initializations. More interestingly, when extremely short
horizons were taken into account (T “ 50) the difference became appalling, as shown
in Fig. 5.4: pre-training via mixture-based objectives lead to faster learning and higher
performances, while pre-training via disjoint objectives turned out to be even harmful
(Fig. 5.5). This was motivated by the fact that the disjoint objective overfitted the task
over the states reachable without coordinated exploration, resulting in almost determin-
istic policies, as shown in in Appendix C.3. Finally, we tested the zero-shot capabilities
of policy pre-training on the simpler but high dimensional exploration task of Env. (ii),
where the goal was sampled randomly between worst-case positions at the boundaries
of the region reachable by the arm. As shown in Fig. C.41, both joint and mixture
were able to guarantee zero-shot performances via pre-training compatible with MA-
TRPO after learning over 2e4 samples, while disjoint objectives were not. On the other
hand, pre-training with joint objectives showed an extremely high-variance, leading to
worst-case performances not better than the ones of random initialization. Mixture ob-
jectives on the other hand showed higher stability in guaranteeing compelling zero-shot
performance.

TakeAways

Overall, the proposed experiments managed to answer to all of the experimental ques-
tions: (a) Algorithm 5.3 is indeed able to optimize for finite-trial objectives; (b) Mix-
ture objectives enforce coordination, essential when high efficiency is required, while
joint or disjoint objectives may fail to lead to relevant solutions because of under or over
optimization; (c) The efficient coordination through mixture objectives enforces the
ability of pre-training via state entropy maximization to lead to faster and better
training and even zero-shot generalization.
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Concluding Remarks

In this chapter, we extended the state entropy maximization problem to Markov Games
via a novel framework called Convex Markov Games. First of all, we showed that
the task can be defined in several different ways: one can look at the joint distribution
among all the agents, the marginals which are agent-specific, or the mixture which is a
tradeoff of the two. Thus, we linked these three options via performance bounds and
we show that while the first might enjoy nice theoretical guarantees, the others are more
promising at working in practice, the latter in particular. Then, we designed a practical
trust-region algorithm addressing more practical scenarios and we use it to confirm in
a set of experiments the expected superiority of mixture objectives, due to its ability to
enforce efficient but coordinated exploration over short horizons.
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CHAPTER6
Conclusions and Perspectives

In this thesis, we investigated the role of unsupervised Reinforcement Learning through
the lens of State Entropy Maximization in settings that go beyond the classical single-
agent, fully observable framework. In particular, we explored how this objective can be
meaningfully extended to more realistic and challenging domains, such as partially ob-
servable environments and multi-agent systems. To this end, we introduced two novel
classes of decision-making problems, convex Partially Observable Markov Decision
Processes (cPOMDPs) and convex Markov Games (cMGs), and provided a thorough
analysis of their theoretical foundations, as well as the practical implications of adopt-
ing entropy-based objectives within them.

Alongside these theoretical contributions, we proposed concrete pre-training method-
ologies that optimize more practical relaxations of the maximum state entropy objec-
tive. We showed how such approaches can yield broadly exploratory behaviors and sig-
nificantly improve downstream performance when compared to training from scratch.

Importantly, these contributions were not straightforward extensions of prior work
in simplified domains; rather, we uncovered that entropy maximization behaves in sub-
stantially different ways in partially observable and multi-agent settings, thus demand-
ing new formulations and insights. While our results pave the way for scalable, general-
purpose pre-training in complex Reinforcement Learning scenarios, several compelling
research questions remain open. Below, we outline a few of these directions.

When are cPOMDPs tractable?
In Chapter 4, we highlighted a fundamental discrepancy between state and observation
entropy in cPOMDPs, which complicates the direct use of entropy-based objectives. It
remains an open question under which conditions, such as assumptions on the obser-
vation emission process, the form of the utility function, or the structure of the policy
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class, cPOMDPs can be solved efficiently, either from a computational or statistical
standpoint.

Can we devise more scalable algorithms for entropy maximization in cPOMDPs?
Also in Chapter 4, we showed that state entropy maximization can in principle be ad-
dressed via belief-based policies. However, devising practical algorithms for approxi-
mating belief states and optimizing such policies remains an open challenge. It would
be of great interest to investigate whether approximate belief-learning techniques can
capture the theoretical advantages promised by the entropy maximization objective.

What are the theoretical properties and practical benefits of cMGs?
In Chapter 5, we introduced cMGs as a framework for unsupervised pre-training in
multi-agent settings. While we demonstrated practical ways to optimize entropy in
these games, their general computational and statistical complexity is still poorly un-
derstood. Future work could explore under which structural assumptions cMGs be-
come tractable. Additionally, extending the analysis to other convex objectives beyond
entropy may help address fundamental multi-agent challenges such as coordination,
imitation, competition, and non-stationarity.

In summary, this thesis contributes both foundational insights and algorithmic tech-
niques for unsupervised policy pre-training in more realistic Reinforcement Learning
scenarios. We hope that the introduced frameworks, results, and open questions will
inspire further research into principled unsupervised pre-training for general-purpose
Reinforcement Learning systems.
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APPENDIXA
Maximum Entropy for Representation Learning

In this chapter, we provide an additional example of how Maximum Entropy formulations turn out to be effective
tools for RL, introducing a new algorithm for representation learning that combines a Maximum Entropy principle
with distributional Reinforcement Learning [dRL, Bellemare et al., 2023]. The content of this chapter is based on the
paper "Distributional Policy Evaluation: a Maximum Entropy approach to Representation Learning" co-authored
with Alberto Maria Metelli, and Marcello Restelli, and published at NeurIPS 2023.1

A.1 Preliminaries

In distributional Reinforcement Learning [Bellemare et al., 2023], an agent aims to estimate the entire distribution of
the returns achievable by acting according to a specific policy. This is in contrast to and more complex than classic
RL [Sutton, 2018, Szepesvári, 2022], where the objective is to predict the expected return only.

In recent years, several algorithms for dRL have been proposed, both in evaluation and control settings. The
push towards distributional approaches was particularly driven by additional flavors they can bring into the discourse,
such as risk-averse considerations, robust control, and many regularization techniques [Chow et al., 2017, Brown
et al., 2020a, Keramati et al., 2020]. Most of them varied in how the distribution of the returns is modeled. The
choice of the model was shown to have a cascading effect on how such a distribution can be learned, how efficiently
and with what guarantees, and how it can be used for the control problem.

Due to these successes, one might wonder whether the potential of looking into the entire distribution of returns
somehow transpires into the representation learning of the state-action spaces, that is to find a good feature repre-
sentation of the decision-making space so as to make the overall learning problem easier, tenderly by reducing the
dimensionality of such spaces.

Now, the RL literature proved that reducing the state space size while preserving the important features of the
original state space is beneficial, namely with state-aggregation feature functions [Singh et al., 1994a, Van Roy,
2006, Dong et al., 2020]. This is particularly true when high dimensionality can make learning slower and more
unstable, as in classic RL in general, or when the learning process is almost unfeasible in small-samples regimes, as
for dRL, where learning the entire distribution of returns requires a large number of samples.

Thus, motivated by these considerations, while D-Max-Ent Policy Evaluation allows for the use of any type of
structural constraint, this chapter focuses on state-aggregation feature functions, and we answer following question:

1A complete reference can be found in the bibliography [Zamboni et al., 2023]
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Appendix A. Maximum Entropy for Representation Learning

How are representation learning and policy evaluation intertwined? Do distributional methods offer a new
way to highlight and exploit this connection?

In order to answer this question, we first need to introduce two of the building blocks of the following results.

Distributions of Returns

Given an MDP M with discount factor γ, the Discounted Return is the sum of rewards received from the initial state
onwards, discounted according to their time of occurrence:

Gπ
psq “

8
ÿ

t“0

γtRt|s0 “ s. (A.1)

The Value Function of a given policy π is the expectation of this quantity under the policy itself:

V π
psq “ ErGpsqs “ E

«

8
ÿ

t“0

γtRt|s0 “ s

ff

. (A.2)

The Return Distribution Function ηπ of a given policy π is a collection of distributions, one for each state s P S,
where each element is the distribution of the random variable Gπ

psq:

ηπ
psq “ Dπ

psq

«

8
ÿ

t“0

γtRt|s0 “ s

ff

, (A.3)

where Dπ
psq extracts the probability distribution of a random variable under the joint distribution of the trajectory.

The Distributional Policy Evaluation Problem then consists of estimating the return distribution function of
Eq. (A.3) for a fixed policy π.

Maximum Entropy Estimation

Maximum Entropy (Max-Ent) methods [Dudík and Schapire, 2006, Wainwright and Jordan, 2007, Sutter et al.,
2017] are density estimation methods that select the distribution that maximizes the uncertainty, i.e., the one with
maximum entropy.2 Additionally, they assume that the learner has access to a feature mapping F from X to RM . In
the most general case, we may have M “ `8. We will denote by Φ the class of real-valued functions containing
the component feature functions fj P F with j P rM s.

A distribution p is consistent with the true underlying distribution p0 if

Ex„prfjpxqs “ µj , @j P rM s, (A.4)

where
µj :“ Ex„p0 rfjpxqs (A.5)

In this case, we say that p satisfies (in expectation) the structural constraints imposed by the features in F . In
practice, p0 is not available and Max-Ent methods enforce empirical consistency over N independent and i.i.d.
observations D “ tx1, . . . , xNu „ p0 with support in X by replacing the definition in Eq. (A.5) with

µ̂jpDq :“
1

N

ÿ

iPr1:Ns

fjpxiq, @j P rM s. (A.6)

The distribution p is said to be consistent with the data D if it matches the empirical expectations. The empirical
Max-Ent problem consists then of the following optimization problem

max
pP∆pX q

Hppq

s.t. Ex„prfjpxqs “ µ̂j , @j P rM s,
(A.7)

with the optimization problem in expectation differing just in the constraints (i.e., replacing constraint from Eq. (A.6)
with the ones from Eq. (A.5)). It is well known that the optimal solution to the empirical Max-Ent problem in

2With little abuse of notation, we will use the same symbol for the probability distribution and its p.d.f., which we assume to
exist w.r.t. a reference measure.
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A.2. A Maximum Entropy Approach to Distributional Policy Evaluation

Eq. (A.7) is a distribution pλ P ∆pX q belonging to the class of exponential distributions parametrized by the
parameters λ, namely:

pλpxq “ Φλ exp

¨

˝

ÿ

jPrMs

λjfjpxq

˛

‚, (A.8)

where Φλ :“
ş

X exp
´

ř

jPrMs
λjfjpx1

q

¯

dx1 is a normalization constant, which ensures that p P ∆pX q, and its log-

transformation takes the name of log-partition function Apλq :“ log
ş

X expp
ř

jPrMs
λjfjpxqqdx. The log-partition

function defines the set of well-behaved distributions Ω “ tλ P RM : Apλq ă `8u.
At optimality, the parameters are defined as λ̂ and correspond to the optimal Lagrangian multipliers of the dual

of the empirical Max-Ent problem in Eq. (A.7). Now on, we will use p̂ to identify pλ̂ for simplicity.

A.2 A Maximum Entropy Approach to Distributional Policy Evaluation

Algorithm A.2: Distributional Max-Ent Progressive Evalua-
tion (D-Max-Ent PE)

Require: pHN ,Fq Ź N trajectories, set of features
η̂ “ argmax

η
Hpηq

s.t. EX„ηrfjpXqs “ µ̂jpHN q @j P rM s

η P ∆pX q

return η̂

The proposed approach turns distributional
PE into a pure density estimation problem
in a Max-Ent framework, called Distribu-
tional Max-Ent Policy Evaluation, as de-
scribed in Algorithm 1. For this transla-
tion, the algorithm uses the distribution of
returns η as p, N -trajectory samples HN “

tHu
N
n“0 as data, and a fixed set of fea-

tures functions F belonging to a function
class Φ. Note that to do this, we need to
slightly change the notation concerning the
dRL framework: η will not be a |S|-vector of distributions with support over R, but rather a joint distribution over
the whole support X “ S ˆ R.

Turning PE into a Max-Ent problem has many upsides. First of all, the Max-Ent principle allows to deal with any
kind of support X , unifying continuous and discrete cases under the same framework; secondly, it does not require
specifying a family of probability distributions to choose from; moreover, it implicitly manages the uncertainty by
seeking a distribution as agnostic as possible, i.e., as close to the uniform distribution as possible.

Finally, Max-Ent allows to include of structural constraints over the return distribution under many different
flavors, both as in the standard value-function approximation methods [Van Roy, 2006] and as in more recent works
based on statistical functionals acting over the return portion R of the support [Bellemare et al., 2023]. One of the
possible limitations might be the requirement to have access to a batch of i.i.d. samples, but this is not necessarily
restrictive: the result can be generalized for a single β-mixing sample path by exploiting blocking techniques [Yu,
1994, Nachum et al., 2019].

Generalization Error Bound
As previously said, the inner properties of Max-Ent allow for translating the results from density estimation methods
to the distributional PE setting, and in particular, generalization-error bounds defined as KL-divergences.3 Unfortu-
nately, the generalization error bounds of traditional Max-Ent theory contain a conservative term that compares the
solutions of the expectation and empirical Max-Ent problems, η̄, η̂ respectively, by taking the maximum between
the 1-norm of the respective multipliers, namely maxλPtλ̄,λ̂u

||λ||1. This quantity is bounded yet unknown, making
the result unpractical.

In the following, we extend the previous results with a more practical bound containing ||λ̂||1 instead of the
maximum, requiring some additional assumptions about the expressiveness of the feature functions. This result is
of independent interest and allows us to directly use the bound from an algorithmic perspective.

Theorem A.2.1 (Generalization Error Bound of D-Max-Ent PE). Assume that the set of features F belong to the
function class Φ, which it is such that supxPX ,fPF ||fpxq||8 “ F ă `8 and that the minimum singular value
σmin of the empirical covariance matrix of the features ˆCovpFq is strictly positive, namely σminp ˆCovpFqq ą 0.
Then, given a sample batch tx1, . . . , xNu P XN of N i.i.d. points drawn from the true distribution ηπ , for any
δ P p0, 1q, it holds with probability at least 1 ´ δ that the solution to the sampled Max-Ent problem η̂ satisfies the

3The KL-divergence between two distributions p, q is defined as KLpp||qq “ Ex„prlogpppxq{qpxqqs

113



i
i

“thesis” — 2025/10/7 — 20:16 — page 114 — #124 i
i

i
i

i
i

Appendix A. Maximum Entropy for Representation Learning

following:

KLpηπ
||η̂q À ´Hpηπ

q ` L̃pη̂q ` Bpλ̂,F , N, δq (A.9)

L̃pη̂q “ ´
1

N

ÿ

iPr0:Ns

log η̂pxiq (A.10)

Bpλ̂,F , N, δq “ 10}λ̂}1

˜

RN pΦq ` F

c

log 1{δ

2N

¸

, (A.11)

where À stands for the fact that the bound comprises additional terms that decrease at a higher rate in sample
complexity and were therefore neglected. Hpηπ

q and L̃pη̂q, the empirical log-likelihood of the solution, form a bias
term. The remaining term Bpλ̂,F , N, δq is a variance term depending on the multipliers characterizing the solution
λ̂, the number of samples, the confidence level δ, and the feature class complexity as the empirical Rademacher
complexity of the class RN pΦq [Mohri et al., 2018].

Proof Sketch. Here we report the main steps of the proof of Th. A.2.1. The interested reader can find the complete
proof in Appendix B.3. First, define the set containing the solutions to the expected and sampled Max-Ent prob-
lems with S :“ tη̄, η̂u, the related set for the multipliers ΩS :“ tλ̄, λ̂u, and a quantity that will be central now
on hpx1, ¨ ¨ ¨ , xN q :“ maxηPS |Eηπ rlog ηs ´ 1

N

ř

iPrNs
log ηpxiq|. Then, the building blocks of the error term

KLpηπ
||η̂q, namely KLpη̄||η̂q and KLpηπ

||η̄q are bounded by:

KLpη̄||η̂q ď 2hp¨q

KLpηπ
||η̄q ď ´Hpηπ

q ` L̃pη̂q ` 3hp¨q.

It is possible to show that:

hp¨q ď 2 sup
λPΩS

||λ||1

˜

RN pΦq ` F

c

log 1{δ

2N

¸

sup
λPΩS

||λ||1 ď ||λ̂||1 `

d

6M

σminp ˆCovpFqq
hp¨q.

The first inequality is obtained with standard methods as in van der Vaart and Wellner [1996], Dudley [1999],
Koltchinskii and Panchenko [2002], Wang et al. [2013]. The second one is obtained by exploiting the intrinsic
properties of the Max-Ent solution and by noting that it is possible to link hp¨q with the Bregman divergence of the
log-partition function DApλ̄, λ̂q.

One can see that the use of the second inequality introduces an additional assumption about the expressiveness
of the feature functions, requiring the minimum singular value of the sampled covariance matrix σminp ˆCovpFqq

to be strictly positive. As a final step, setting x “
a

hpx1, ¨ ¨ ¨ , xN q and combining the two previous inequalities
yields a quadratic inequality:

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

x2
´ bx ´ c ď 0

b “ 2
b

6M

σminp ˆCovpFqq

«

RN pΦq ` F
b

log 1{δ
2N

ff

c “ 2||λ̂||1

«

RN pΦq ` F
b

log 1{δ
2N

ff

,

which is well-defined and solves for

hpx1, ¨ ¨ ¨ , xN q À }λ̂}1

˜

RN pΦq ` F

c

log 1{δ

2N

¸

,

by neglecting higher-order terms. The statement of the theorem is then just a matter of combining all these
results.
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A.3 Distributional Representation Learning with State Aggregation

This section addresses the research question, namely how to use the bound in Th. A.2.1 from an algorithmic per-
spective to automatically refine the features used to represent the state space in a principled way while performing
D-Max-Ent PE. In particular, the focus is on a specific instance of feature functions for return distributions, namely
state aggregation. More specifically, the state aggregation feature functions F “ tfjujPrMs split the state space into
M disjoint subsets, one for each function, i.e., S “ YjPrMsSj and Sj X Sj1 “ H, j, j1

P rM s, j ‰ j1, and gives
back the associated return g P R, namely:

fj : S ˆ R Ñ R
fjps, gq “ g1rsPSj s.

(A.12)

These features are bounded by the maximum return Gmax, while the empirical Rademacher complexity over N
samples of returns tpsi, giquiPrNs can be directly computed as in Clayton [2014]:

RN pΦq “ Gmax

ÿ

jPrMs

b

P̂ pSjq, (A.13)

where P̂ pSjq “ Nj{N and Nj “ |tpgi, siq : si P Sj , i P rN su|. The decomposition of the Rademacher term into
single terms leads to rewriting Bpλ̂,F , N, δq as in the following lemma.

Lemma A.3.1. For Distributional Max-Ent Evaluation with a state-aggregation feature class, the variance term
Bpλ̂,F , N, δq is given by;

Bpλ̂,F , N, δq “ 10}λ̂}1Gmax

¨

˝

ÿ

jPrMs

b

P̂ pSjq `

c

log 1{δ

2N

˛

‚. (A.14)

Representation Refinement: Progressive Factorization

State aggregation features are of interest due to the possibility of progressively refining the representation by in-
creasing the factorization level, that is, by splitting a subset Sj into further disjoint subsets. This refinement is called
progressive factorization and is defined as follows.

Definition A.3.1 (Progressive Factorization). For two sets of state aggregation feature functions, F ,Fj , we say
that Fj is a progressive factorization of F , i.e., F Ă Fj , if F “ tf1, . . . , fj´1, fj`1, . . . , fMu Y tfju,Fj “

tf1, . . . , fj´1, fj`1, . . . , fMuYtfk
j ukPrKs and the additional functions tfk

j ukPrKs are such that the corresponding
subsets satisfy

Sj “
ď

kPrKs

Sk
j , Sk

j X Sk1

j “ H, k, k1
P rKs, k ‰ k1,

where only non-degenerate class factorizations will be considered, meaning that the new subsets Sk
j are non-empty.

It is relevant for our interests that, in the case of progressive factorizations F Ă F 1, the respective Max-Ent
solutions enjoy the following monotonicity property

Lemma A.3.2 (Monotonicity). The multipliers of the Max-Ent solutions λ̂, λ̂1 using F Ă F 1 are such that

}λ̂}1 ď }λ̂1
}1. (A.15)

This result ensures a monotonically increasing of all terms contained in the variance term of Eq. (A.11) since
the complexity term is monotonically increasing by definition. On the other hand, the bias represented by Eq. (A.10)
is guaranteed to decrease monotonically at finer levels of factorizations.

115



i
i

“thesis” — 2025/10/7 — 20:16 — page 116 — #126 i
i

i
i

i
i

Appendix A. Maximum Entropy for Representation Learning

D-Max-Ent Progressive Factorization Algorithm

Algorithm B.1: Distributional Max-Ent Progressive Factorization

Require: pHN ,F0, δ, β,Kq Ź N -trajectory samples, initial feature set, confidence level, boosting factor,
factorization factor
Done Ð False, i˚

Ð 0
while not Done do

F Ð Fi˚ ,M Ð |F |

η̂ Ð D-Max-Ent PEpHN ,Fq

J pη̂q Ð βLpη̂q ` Bpλ̂,F , N, δq

tFjujPrMs Ð Progressive FactorpF ,Kq

for j P rM s do
η̂j Ð D-Max-Ent PEpHN ,Fjq

J pη̂jq Ð βLpη̂jq ` Bpλ̂j ,Fj , N, δq

if J pη̂jq ă J pη̂q then
i˚

Ð j
end if

end for
if Fi˚ ““ F then

Done Ð True
end if

end while
return η̂i˚

In summary, D-Max-Ent PE shows a generalization error bound whose quantities are either known or estimated
and change monotonically between progressive factorizations. On these results, we build an algorithm called D-
Max-Ent Progressive Factorization, shown in Algorithm 2, which iteratively constructs a sequence of feature sets
F0 Ă F1 Ă . . . with progressive factorization while performing PE.

The behavior of the algorithm is similar to what is done in Structural Risk-Minimization [SRM, Vapnik, 1991],
and it involves optimizing for a trade-off: the bias term (i.e., empirical risk) decreases by taking into account more
complex features classes, while the variance term (i.e., the confidence interval) increases. The whole algorithm is
then based on the progressive search for the new set of feature functions which reduces a proxy of the generalization
error bound of D-Max-Ent PE:

J pη̂q “ βLpη̂q ` Bpλ̂,F , N, δq, (A.16)

and the procedure will continue until there are no further improvements in the trade-off. Due to the nature of the
proxy function, the role of β ą 0 is to regulate the tendency to factorize. Higher values of β will increase the
magnitude of the decreasing term, causing a boost in the tendency to factorize. On the other hand, lower values will
further decrease the importance of this term, resulting in a lower tendency to factorization.

Finally, the Progressive Factor function takes as input the list of feature functions and a factor K and returns
a list of progressively factored set of feature functions. More specifically, each element in tFjujPrMs corresponds
to a progressive factorization of the feature fj , factoring the related subset Sj into K disjoint subsets as in Def-
inition A.3.1. The new K subsets tSj

kukPrKs are constructed in the worst-case scenario: the complexity term in
Eq. (A.13) is maximized with partitions of a set leading to a uniform distribution of samples in each new partitioned
subset, and since it is not possible to know in advance which samples will be contained in which new subset, one
way is then to proceed with a uniform factorization. We decided to maintain the most agnostic approach over the set
of possible features, but prior knowledge could be used to narrow down the partitions to consider.

A.4 Numerical Validation

This section reports the results of some illustrative numerical simulations that make use of Algorithm 2.

Simulations Objectives. The objective of the simulations is to illustrate two essential features of the proposed
method that were only suggested by the theoretical results. First of all, to analyze the outcome of performing policy
evaluations with aggregated states at different sample regimes, by comparing the output of the proposed algorithm
with some relevant baseline distributions. Secondly, the aim is to study the role of the boosting parameter β and the
sampling regime N , being the main hyper-parameters of Algorithm 2, in the tendency to factor the representation at
utterly different sample regimes.
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MDP Instance Design. The effectiveness of the proposed approach is expected to be particularly evident
in MDPs admitting a factored representation of the return distribution, namely the ones in which many states are
nearly equivalent under the evaluation of a policy. This factorizability property is not uncommon in general since
it is present in any environment with symmetries and Block-MDPs [Du et al., 2019] as well. The MDP instance is
then designed to be a Block-MDP indeed since it allows for better evaluate the simulation objectives: one would
expect that operating on MDPs admitting a factored representation would allow for lower values of β to be effective
enough, while a higher level of boosting would force over-factorizations that are unnecessary, leading to no further
improvement or even degradation of the results. The simulations are run on a rectangular GridWorld, with a height
of 4 and length of 8, with traps on the whole second line and goals all over the top. The policy is selected as a
uniform distribution over the set of actions A “ pup, left, rightq.

Performance Indexes. The proposed MDP instance presents many upsides in terms of the interpretability
of the output as well. First of all, it allows us to directly compute the true underlying return distribution with
Monte-Carlo estimation. Secondly, it permits to compare of the output distribution of the algorithm with the result
of performing plain Distributional Max-Ent Policy Evaluation (Algorithm 1) with two baseline representations: an
oracle factorization that aggregates together states known to be equivalent under the policy, and in particular all the
upper and lower states respectively; a full factorization that employs |S|-singletons of states as representations, i.e.,
the most fine-grained representation possible. The comparison is made via two relevant quantities, the KL divergence
with respect to the true distribution (the bounded quantity), and the total bound Btot “ L̃pη̂q ` Bpλ̂,F , N, δq (the
bounding quantity). Finally, the value of the partition splitting K is set to 2, to reduce the exponential search space
of all possible uniform partitions, the discount factor γ is set to 0.98 and the confidence δ to 0.1, the results are
averaged over 10 rounds with the respective standard deviation.

Results Discussion. The results of the simulations are reported from Fig. A.1 to Fig. A.4, with the quantity
related to the oracle parametrization being in orange, while the ones related to the full parametrization being in
blue. It is possible to notice that these two distributions have almost the same KL divergences with respect to the
true return distribution (Fig. A.2, A.4), yet they highly differ in the bound Btot (Fig. A.1, A.3) mostly due to the
variance term, which is way higher in the case of full factorization.

This suggests that the bound is indeed able to distinguish between the two. The plotting of the outputs of
Algorithm 2 stops at the optimal number of factorization steps found for different values of β, namely at Fi‹ .

The plots should be read as follows: while the bound term Btot is expected to increase at each factorization step,
the KL divergences with respect to the true return distribution should decrease as much as possible. In all cases,
it is evident that the value of β pushes towards a higher number of factorization steps, going from performing no
factorization at all using low values pβ “ 3q, to performing up to 4 factorization steps even in this simple scenario
with higher values pβ “ 450q, both at low and high sample regimes pN P t50, 1000uq.

Furthermore, at higher sample regimes, it is possible to see how the higher quality of the estimation counteracts
the action of β, and increasing it generally induces still fewer factorizations compared to the low sample regimes
with same values of β, as in Fig. A.3, A.4.

Finally, it is apparent that minimizing for Eq. (A.16) successfully decreases the KL divergence. Nonetheless, its
values stop decreasing significantly after the first factorization, which splits the state space over the two rows and
further factorizations might lead to performance degradation as well.
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t

Figure A.1: Bound Trend for different β (N “

50q

Figure A.2: KL Trend for different β (N “ 50q

Figure A.3: Bound Trend for different β (N “

1000q

Figure A.4: KL Trend for different β (N “ 1000q

Concluding Remarks

In this section, we presented in a dRL framework a new policy evaluation approach based on Maximum Entropy
density estimation, called Distributional Max-Ent Policy Evaluation, which benefits from the learning guarantees of
Max-Ent and the generality of the setting, being able to enforce even complex feature families.

We extended previous results and derived a practical formulation of the generalization error bound, which con-
tains only estimated and known quantities of the problem. We then instantiated a particular class of features, namely
state aggregation, and we proposed an algorithm called Distributional Max-Ent Progressive Factorization to adap-
tively find a feature representation that optimizes for a proxy of the generalization error bound in a Structural Risk
Minimization fashion.

In this way, we showed that performing PE can indeed drive the learning of a reduced-dimension representation
in the distributional setting. We then provided illustrative simulations showing the empirical behaviors of these
approaches, while clarifying the links between some hyperparameters and the sample regime.

Much of our analysis and theoretical guarantees straightforwardly extend to other feature classes, and an open
question is to investigate other instances of features and settings that can benefit from the proposed framework.
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APPENDIXB
Missing Proofs

B.1 Proofs of Chapter 4

Belief MDPs Interestingly, the MBE objective has a clean and neat equivalent formulation in belief-state POMDPs
that can be turned into a dual problem as for MDPs, yet the resulting problem is still intractable. More specif-
ically, having defined belief states, we can encode the POMDP M into a corresponding belief MDP MB :“
pB,A, rP,B, b0, T q where

• B is a finite set of states such that each b P B corresponds to a belief state, and B is obtained by running
Algorithm B.1 in M;

• A is the set of actions in M;

• rP : B ˆ A Ñ ∆B is the transition model of the belief MDP defined in a few lines;

• b0 P B is the initial state;

• T is the horizon length.

To fully characterize MB, we can extract the transition model rP from M as

rPpb1
|b, aq “

ÿ

toPO|b1“Taopbqu

P po|b, aq “
ÿ

toPO|b1“Taopbqu

ÿ

sPS
P po|sqP ps|b, aq

“
ÿ

toPO|b1“Taopbqu

ÿ

sPS
Opo|sq

ÿ

s1PS

bps1
qPps|s1, aq.

Let us denote as dπ P ∆S the expected finite-horizon state distribution induced by a policy π P ΠI on the true
(unobserved) states. Then, we can define the objective function of our problem as

max
πPΠI

Fpdπq “ min
πPΠI

E
s„dπ

rlog dπpsqs (B.1)
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Following standard techniques for MDPs [Puterman, 2014], we can obtain the optimal planning policy for (B.1) by
solving the dual convex program

maximize
dP∆S

tωtP∆BˆAutPr1:T s

Fpdq

subject to
ÿ

a1PA

ωt`1pb1, a1
q “

ÿ

bPB,aPA
ωtpb, aqrPpb1

|b, aq @b1
P B, @t P 1 . . . T

subject to dpsq “
1

T

ÿ

tPrT s

ÿ

bPB,aPA
ωtpb, aqbpsq @ps, aq P S ˆ A

and then obtaining the resulting (non-stationary) policy from the solution ω˚ as πtpa|bq “ ω˚
t pb, aq{

ř

a1PA ω˚
t pb, a1

q,
@pb, aq P B ˆ A. As one may notice, while this problem has a neat and concise formulation, the dimensionality of
the optimization problem does not scale with the dimension of M.

Belief Set Computation The belief states set reachable in a T step interaction with a POMDP can be computed
via the following Algorithm B.1:

Algorithm B.1: Belief set

Input: belief b, set B, step t, horizon T
if t ă T then

for po, aq P O ˆ A do
b1

“ T ao
pbq

if b1
R B then
B “ BeliefSsetpb1,B Y tb1

u, t ` 1, T q

end if
end for

end if
return B

Proofs of Policy Gradients Computation
Proposition 4.2.1 ((General) Policy Gradient for single-trial cPOMDPs). Let πθ P ΠI a policy parametrized by
θ P Θ Ď RIA, and let the policy scores ∇θ log πθpiaq “

ř

tPrT s
∇θ log πθparts|irtsq. We can compute the policy

gradient of πθ as

∇θJ1,Opπθq “ E
ia„p

πθ
IA,1

”

∇θ log πθpiaqFpdIp¨|iqq

ı

, (4.32)

where I P tS,Ou.

Theorem 4.2.3. For a policy πθ P ΠI parametrized by θ P Θ Ď RSA, we have

∇θJ̃1,Spπθq “ E
b„pπB

E
s̃„pp¨|bq

”

∇θ log πθps̃qFpdp¨|s̃qq

ı

, (4.34)

where ∇θ log πθps̃q are defined as in 4.2.1. Additionally, let TBpπ1, π2q “ tb P TB : pπ1pbq ą 0 _ pπ2pbq ą 0u,
b‹

“ argmaxbPTBpπ1,π2q Es̃„pp¨|bq Fpdp¨|s̃qq, and F̄pb‹
q “ Es̃„pp¨|bq Fpdp¨|s̃qq, we have

|J̃1,Spπ1q ´ J̃1,Spπ2q| ď T F̄pb‹
qdTV

pπ1, π2q. (4.35)

Proof. Let us denote h “ s ‘ o ‘ b ‘ s̃ and for a generic i P tS,O,B, S̃u we denote i as the trajectory on the
information set. This is done to be able to use any kind of policy class considered in the main sections as well. For
a generic single trajectory objective defined with J P tJ1,S ,J1,O, J̃1,Su it is possible to write:

∇θJ pπq “ ∇θ E
h„pπ

rFpdp¨|hqqs

“ ∇θ

ÿ

h

pπphqFpdp¨|hqq

“
ÿ

h

´

∇θp
π

phq

¯

Fpdp¨|hqq
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Thanks to the usual log-trick

“
ÿ

h

pπphq

´

∇θ log p
π

phq

¯

Fpdp¨|hqq

“ E
h„pπ

“

∇θ log p
π

phqFpdp¨|hqq
‰

The computation of the gradient is then reconducted to the calculation of the log-policy term ∇θ log p
π

phq for
the generic class π P ΠI . It follows that

∇θ log p
π

phq “ ∇θ log
´

µps0q
ź

tPrT s

Opot|stqπpat|itqPpst`1|st, atqT otatpbt`1|btq
¯

“ ∇θ

´

logpµps0qq `
ÿ

tPrT s

logpOpot|stqq ` logpπpat|itqq ` logpPpst`1|st, atqq ` logpT otatpbt`1|btqq

¯

Where the only terms depending on θ are indeed the I-specific log-policy terms, leading to

∇θ log p
π

phq “
ÿ

tPrT s

∇θ log πθpat|itq

which leads to the standard REINFORCE-like formulation of policy gradients.

Proofs of Lipschitz Constants Computation
Theorem 4.2.2 (Local Lipschitz Constants). Let π1, π2 P ΠI , let TIpπ1, π2q “ ti P TI : pπ1piq ą 0_pπ2piq ą 0u

be the set of realizable trajectories over I P tS,Ou, and let i‹ “ argmaxiPTIpπ1,π2q FpdIp¨|iqq. It holds

|J1,Ipπ1q ´ J1,Ipπ2q| ď TFpdIp¨|iqqdTV
pπ1, π2q.

Proof. Let us define the set of reachable trajectories in T steps by following a generic policy πi as Ti “ th P Ti :
pπiphq ą 0u, it follows that for both MSE and MOE objective, by defining h as s or o respectively, we can see that

|J pπ1q ´ J pπ2q| “

ˇ

ˇ

ˇ
E

h„pπ1
rFpdp¨|hqqs ´ E

h„pπ2
rFpdp¨|hqqs

ˇ

ˇ

ˇ

ď
ÿ

hPT1YT2

Fpdp¨|hqq

ˇ

ˇ

ˇ
pπ1phq ´ pπ2phq

ˇ

ˇ

ˇ

By defining h‹
P argmaxhPT1YT2

Frdp¨|hqs

ď Frdp¨|h‹
qs

ÿ

hPT1YT2

ˇ

ˇ

ˇ
pπ1phq ´ pπ2phq

ˇ

ˇ

ˇ

We notice that pπi “
śπ

t pπi
t and that the total variation between two product distributions can be upper-bounder by

the summation over the per-step total variations, namely dTV
p
śπ

t pπi
t ,

śπ
t p

πj
t q ď

ř

tPrT s
dTV

ppπi
t , p

πj
t q, leading to

“ Frdp¨|h‹
qsdTV

ppπ1 , pπ2q

ď Frdp¨|h‹
qs

ÿ

tPrT s

dTV
ppπ1

t , pπ2
t q

The only difference between the two distributions (for a fixed step) consists of the policies

“ TFrdp¨|h‹
qsdTV

pπ1, π2
q “ Lpπ1, π2qdTV

pπ1, π2
q

It follows a (bound on a) Lipschitz constant dependent on the two policies to be compared that is directly proportional
to the best single trajectory (in terms of entropy) reachable by the policies themselves. Any policy able to generate
a maximum entropic trajectory will have the highest possible Lipschitz constant. The constant then gets steeper as
the quality of the policies improves.
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Theorem 4.2.3. For a policy πθ P ΠI parametrized by θ P Θ Ď RSA, we have

∇θJ̃1,Spπθq “ E
b„pπB

E
s̃„pp¨|bq

”

∇θ log πθps̃qFpdp¨|s̃qq

ı

, (4.34)

where ∇θ log πθps̃q are defined as in 4.2.1. Additionally, let TBpπ1, π2q “ tb P TB : pπ1pbq ą 0 _ pπ2pbq ą 0u,
b‹

“ argmaxbPTBpπ1,π2q Es̃„pp¨|bq Fpdp¨|s̃qq, and F̄pb‹
q “ Es̃„pp¨|bq Fpdp¨|s̃qq, we have

|J̃1,Spπ1q ´ J̃1,Spπ2q| ď T F̄pb‹
qdTV

pπ1, π2q. (4.35)

Proof. Similarly to the previous steps,

|J̃ pπ1q ´ J̃ pπ2q| “

ˇ

ˇ

ˇ
E

b„pπ1
E

s̃„bp¨q
rFpdp¨|s̃qqs ´ E

b„pπ2
E

s̃„bp¨q
rFpdp¨|s̃qqs

ˇ

ˇ

ˇ

ď
ÿ

bPT1YT2

ÿ

s̃

bps̃qFpdp¨|s̃qq

ˇ

ˇ

ˇ
pπ1pbq ´ pπ2pbq

ˇ

ˇ

ˇ

“
ÿ

bPT1YT2

E
s̃„b

Fpdp¨|s̃qq

ˇ

ˇ

ˇ
pπ1pbq ´ pπ2pbq

ˇ

ˇ

ˇ

Again let us define b‹
P argmaxbPT1YT2

Es̃„b Fpdp¨|s̃qq

ď E
s̃„b‹

Fpdp¨|s̃qqdTV
ppπ1 , pπ2q

ď E
s̃„b‹

Fpdp¨|s̃qq
ÿ

tPrT s

dTV
ppπ1

t , pπ2
t q

“ T E
s̃„b‹

Fpdp¨|s̃qqdTV
pπ1, π2

q “ L̃pπ1, π2qdTV
pπ1, π2

q

Again, the (local) Lipschitz constant L̃pπ1, π2q is dependent on the maximum (expected) entropy that can be induced
by one of the policies. One may notice that Lpπ1, π2q will be usually higher than L̃pπ1, π2q.

Proofs of Proxy Gaps
Theorem 4.2.4 (Proxy Gaps). For a fixed policy π P ΠI , the MSE objective J1,Spπq is bounded by the MOE
objective according to

J1,Spπq ď E
s„p̄S

” 1

PpTO|sq
J1,Opπ|sq

ı

J1,Spπq ě E
s„p̄S

” 1

1 ´ PpTO|sq
J1,Opπ|sq

ı

´ E
s„p̄S

” PpTO|sq

1 ´ PpTO|sq

ı

logO

Analogously, J1,Spπq is bounded by the MBE objective according to

J1,Spπq ď E
s„p̄

” 1

p̄Spsq
J̃1,Spπ|sq

ı

J1,Spπq ě E
s„p̄

” 1

1 ´ p̄Spsq
J̃1,Spπ|sq

ı

´ E
s„p̄

” p̄Spsq

1 ´ p̄Spsq

ı

logS

Proof. MOE: Let us define the set of observation-trajectories that have an entropy higher than the entropy of a fixed
trajectory over true states, namely hOpsq “ to P hO : Fpdp¨|oqq ě Fpdp¨|sqqu. It follows that by employing the
conditional trajectory probability pπpo|sq one can define the probability PphO|sq “

ř

oPhOpsq
pπpo|sq. It follows

that

J1,S ´ J1,O “ E
s„pπp¨q

”

Fpdp¨|sqq ´ J1,Opπ|sq

ı

“ E
s„pπp¨q

”

Fpdp¨|sqq ´ E
o„pπp¨|sq

Fpdp¨|oqq

ı

“ E
s„pπp¨q

”

Fpdp¨|sqq ´
ÿ

o

pπpo|sqFpdp¨|oqq

ı
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By definition Fpdpo P hOpsqqq ě Fpdp¨|sqq, and by positivity of the entropy function Fpdpo R hOpsqqq ě 0

ď E
s„pπp¨q

”

Fpdp¨|sqq ´ PphO|sqFpdp¨|sqq

ı

ď E
s„pπp¨q

”

p1 ´ PphO|sqqFpdp¨|sqq

ı

It follows that

J1,Spπq ď E
s„pπp¨q

” 1

PphO|sq
J1,Opπ|sq

ı

In the same way, focusing on the terms inside the outer expectation for simplicity, one obtains:

J1,S ´ J1,O “ E
s„pπp¨q

”

Fpdp¨|sqq ´ J1,Opπ|sq

ı

“ E
s„pπp¨q

”

Fpdp¨|sqq ´ E
o„pπp¨|sq

Fpdp¨|oqq

ı

“ E
s„pπp¨q

”

Fpdp¨|sqq ´
ÿ

o

pπpo|sqFpdp¨|oqq

ı

Again, one notices that Fpdp¨|o P hOpsqqqq ď Fpdp¨|sqq and Fpdp¨|o P hOpsqqqq ď logpOq, from which the inner
expectation turns out to be bounded by the use of the complementary probability PphC

O|sq “
ř

oRhOpsq
pπpo|sq

ě E
s„pπp¨q

”

p1 ´ PphC
O|sqqFpdp¨|sqq ´ PphO|sq logpOq

ı

“ E
s„pπp¨q

”

PphO|sqFpdp¨|sqq ´ PphO|sq logpOq

ı

Leading to

J1,Spπq ě E
s„pπp¨q

”J1,Opπ|sq ´ PphO|sq logpOq

1 ´ PphO|sq

ı

MBE: Let us define the similar set for hallucinated trajectories hpsq “ ts̃ P hS̃ : Fpdp¨|s̃qq ě Fpdp¨|sqqu,Pph|bq “
ř

sPhpsq
bpsq.

J1,Spπq ´ J̃ pπq “ E
s„pπp¨q

”

Fpdp¨|sqq ´ J̃1,Spπ|sq

ı

“ E
s„pπp¨q

”

Fpdp¨|sqq ´ E
oa,b„pπp¨|sq

E
s̃„b

Fpdp¨|s̃qq

ı

“ E
s„pπp¨q

”

Fpdp¨|sqq ´ E
oa,b„pp¨|sq

ÿ

s̃

bps̃qFpdp¨|s̃qq

ı

Again Fpdp¨|s̃ P hSpsqqq ě Fpdp¨|sqq and Fpdp¨|s̃ R hSpsqqq ě 0

ď E
s„pπp¨q

”

Fpdp¨|sqq ´ E
oa,b„pp¨|sq

rPph|bqsFpdp¨|sqq

ı

ď E
s„pπp¨q

”

p1 ´ E
oa,b„pp¨|sq

Pph|bqqFpdp¨|sqq

ı

We call p̄Spsq “ Eb„pπp¨|sq Pph|bq, it follows that

J1,Spπq ď E
s„pπp¨q

” 1

p̄psq
J̃1,Spπ|sq

ı

In the same way as before, by simply changing the definitions accordingly, one obtains that:

J1,Spπq ě E
s„pπp¨q

” J̃1,Spπ|sq ´ p̄psq logS

1 ´ p̄psq

ı
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B.2 Proofs of Chapter 5

Theorem 5.1.1. Let dπ be the (categorical) distribution induced by π over the finite set S with |S| “ S, and let
dK be the empirical distribution obtained from K independent samples drawn from dπ . Then, for any ϵ ą 0, the
following bound holds:

P pHpdπq ´ HpdKq ą ϵq ď 2S exp

ˆ

´K ¨
ϵ2Varpdπq

2S3H2pdπq

˙

,

where HpdKq and Hpdπq denote the entropy of the empirical and true distributions, respectively, and Varpdπq “
ř

sPrSs
dπpsqp1 ´ dπpsqq is the variance of a random variable associated with the categorical distribution dπ .

Furthermore, to ensure this concentration with confidence 1´ δ, the number of samples n must satisfy the following
lower bound:

K ě
2S3H2

pdπq

ϵ2Varpdπq
¨ ln

2S

δ
.

Proof. The proof consists of three main steps. In order to keep the derivation agnostic from the state or trajectory
based setting, we will now introduce a different yet equivalent notation: let p be a categorical distribution over a
finite set X with |X | “ K, and let p̂ be the empirical distribution obtained from n.

Decomposing the Problem via Union Bound. First, we expand the entropy terms to highlight the contribution of
the single components:

PpHppq ´ Hpp̂q ą ϵq ď P
˜

K
ÿ

i“1

pi log

ˆ

1

pi

˙

´ p̂i log

ˆ

1

p̂i

˙

ą ϵ

¸

“ P
˜

K
ÿ

i“1

hppiq ´ hpp̂iq ą ϵ

¸

,

where pi “ PpX “ xiq and hpxq “ x log
`

1
x

˘

.
Applying the union bound to the previous result, we get:

PpHppq ´ Hpp̂q ą ϵq ď

K
ÿ

i“1

P
´

hppiq ´ hpp̂iq ą
ϵ

K

¯

. (B.2)

Bounding the Entropy of the Components using a Linear Approximation. Now, we focus on finding an upper
bound to hppiq ´ hpp̂iq. We introduce a lower bound to hpp̂iq obtained by a combination of functions that
are linear in the deviation |pi ´ p̂i|:

hpp̂iq ď hppiq ´
hppiq|pi ´ p̂i|

maxppi, 1 ´ piq
ď hppiq ´

hppiq|pi ´ p̂i|

pip1 ´ piq
.

As a consequence

P phppiq ´ hpp̂iq ą ϵq ď P
ˆ

hppiq|pi ´ p̂i|

pip1 ´ piq
ą ϵ

˙

ď P
ˆ

|pi ´ p̂i| ą
pip1 ´ piq

hppiq
ϵ

˙

. (B.3)

Thanks to this last inequality, we can now focus on the concentration inequality of the Bernoulli distributions
associated with the parameters pi.

Applying a Concentration Inequality for Bernoulli Distributions. Finally, we use a concentration inequality on
the estimation of a Bernoulli-distributed parameter to express this probability bound in terms of the variance
of pi (Varppiq “ pip1 ´ piq).
Leveraging Chernoff bound for Bernoulli distributions, we get:

Pp|pi ´ p̂i| ą ϵq ď e´nDDKL
ppi`ϵ||piq

` e´nDDKL
ppi´ϵ||piq

ď 2e
´ nϵ2

2pip1´piq “ 2e
´ nϵ2

2Varppiq . (B.4)

We now complete the proof by combining the results in Eqs (B.2), (B.3), and (B.4):

PpHppq´Hpp̂q ą ϵq ď

K
ÿ

i“1

P
´

hppiq ´ hpp̂iq ą
ϵ

K

¯

ď

K
ÿ

i“1

P
ˆ

|pi ´ p̂i| ą
pip1 ´ piq

Khppiq
ϵ

˙

ď 2
K
ÿ

i“1

e
´

nϵ2pip1´piq

2K2h2ppiq .

(B.5)
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0 0.2 0.4 0.6 0.8 1
0

1

2

pi

V
al

ue
s

Hppiq

Varppiq
Varppiq

Hppiq2

Figure B.1: The plot shows that Hppiq and Varppiq are concave symmetric function with their maximum
located at pi “ 0.5, while Varppiq

Hppiq2
is a convex symmetric function with its minimum located at pi “

0.5.

In order to remove the summation over the K components of the distribution, we need to find a lower bound to
the term pip1´piq

H2ppiq
that is independent of the specific component parameter pi. Here, we show the chain of passages

that achieve this goal:

min
i

pip1 ´ piq

h2ppiq
ě min

i

pip1 ´ piq

H2ppiq
“

maxi pip1 ´ piq

maxi H2ppiq
ě

ř

i pip1 ´ piq

Kmaxi H2ppiq
ě

Varppq

KH2ppq
.

The motivations for each step are:

1. Hppiq ě hppiq.

2. The value of pi that minimizes pip1´piq

H2ppiq
is the one with the highest entropy (see FigureB.1). Since the higher

the entropy Hppiq the higher is also the variance pip1 ´ piq, we can restate the minimization problem as the
ratio of two maximization problems.

3. The term at the numerator is the maximum variance, which can be lower bounded by the average variance.

4. The maximum entropy among the Bernoulli distributions associated with all the components is upper bounded
by the entropy of the categorical distribution p.

Leveraging this result in Eq. (B.5) concludes the proof.

Lemma 5.2.1 (Entropy Mismatch). For every cMG MH equipped with an entropy functional, for a fixed (joint)
policy π “ pπi

qiPN the infinite-trials objectives are ordered according to:

Hpdπq

|N |
ď

1

|N |

ÿ

iPr|N |s

Hpdπi q ď Hpd̃πq

Hpd̃πq ď sup
iPr|N |s

Hpdπi q ` logp|N |q ď Hpdπq ` logp|N |q

Proof. The bounds follow directly from simple yet fundamental relationships between entropies of Joint, marginal
and mixture distributions which can be found in Paninski [2003], Kolchinsky and Tracey [2017], in particular:

1

|N |
Hpdπq ď

1

|N |

ÿ

iPrN s

Hpdπi q
(a)
ď Hpd̃πq

(b)
ď

1

|N |

ÿ

iPrN s

Hpdπi q ` logp|N |q
(c)
ď sup

iPrN s

Hpdπi q ` logp|N |q ď Hpdπq ` logp|N |q

where step (a) and (b) use the fact that d̃πpsq :“ 1
|N |

ř

iPrN s
dπi psq is a uniform mixture over the agents, whose

distribution over the weights has entropy logp|N |q, so as we can apply the bounds from Kolchinsky and Tracey
[2017]. Step (c) uses the fact that Hpdπq “

ř

iPrN s
Hpdπi |dπăiq, then taking the supremum as first i it follows that

supiPrN s Hpdπi q “ Hpdπq ´
ř

jPrN sąi Hpdπj |dπăj , d
π
i q ď Hpdπq due to non-negativity of entropy.

Theorem 5.2.2 (Objectives Mismatch in cMGs). For every cMG MF equipped with a L-Lipschitz function F (see
Ass. 2.3.1), let K P N` be a number of evaluation episodes/trials, and let δ P p0, 1s be a confidence level, then for
any (joint) policy π “ pπi

P Πi
qiPr|N |s, it holds that

|ζKpπq ´ ζ8pπq| ď LT

c

2|S| logp2T {δq

K
,
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|ζiKpπq ´ ζi8pπq| ď LT

d

2|S̃| logp2T {δq

K
,

|ζ̃Kpπq ´ ζ̃8pπq| ď LT

d

2|S̃| logp2T {δq

|N |K
.

Proof. For the general proof structure, we adapt the steps of Mutti et al. [2022a] for Convex MDPs to the different
objectives possible in cMGs. Let us start by considering Joint objectives, then:

ˇ

ˇζKpπq ´ ζ8pπq
ˇ

ˇ “

ˇ

ˇ

ˇ
E

dK„pπ
K

rFpdKqs ´ Fpdπq

ˇ

ˇ

ˇ
ď E

dK„pπ
K

r|FpdKq ´ Fpdπq|s

(a)
ď E

dK„pπ
K

“

L }dK ´ dπ}1

‰

ď L E
dK„pπ

K

“

}dK ´ dπ}1

‰

(b)
ď L E

dK„pπ
K

„

max
tPrT s

}dK,t ´ dπt }1

ȷ

,

where in step (a) we use the assumption of F being Lipschitz to write and in step (b) we apply a maximization over
t P rT s since dK “ 1

T

ř

tPrT s
dK,t and dπ “ 1

T

ř

tPrT s
dπt . We then apply bounds in high probability

Pr
´

max
tPrT s

}dK,t ´ dπt }1 ě ϵ
¯

ď Pr
´

ď

t

}dK,t ´ dπt }1 ě ϵ
¯

(c)
ď

ÿ

t

Pr
´

}dK,t ´ dπt }1 ě ϵ
¯

ď T Pr
´

}dK,t ´ dπt }1 ě ϵ
¯

,

with ϵ ą 0 and in step (c) we applied a union bound. We then consider standard concentration inequalities for
empirical distributions [Weissman et al., 2003] so to obtain the final bound

Pr

˜

}dK,t ´ dπt }1 ě

c

2|S| logp2{δ1q

K

¸

ď δ1. (B.6)

By setting δ1
“ δ{T , and then plugging the empirical concentration inequality, we have that with probability at least

1 ´ δ
ˇ

ˇζKpπq ´ ζ8pπq
ˇ

ˇ ď LT

c

2|S| logp2T {δq

K
,

which concludes the proof for Joint objectives.
The proof for disjoint objectives follows the same rationale by bounding each per-agent term separately and after

noticing that due to Assumption 5.1.1, the resulting bounds get simplified in the overall averaging. As for mixture
objectives, the only core difference is after step (b), where d̃K takes the place of dK and d̃π of dπ . The remaining
steps follow the same logic, out of noticing that the empirical distribution with respect to d̃π is taken with respect
|N |K samples in total. Both the two bounds then take into account that the support of the empirical distributions
have size |S̃| and not |S|.

Policy Gradient in cMGs with Infinite-Trials.
In this Section, we analyze policy search for the infinite-trials Joint problem ζ8 of Eq. (5.1), via projected gradient
ascent over parametrized policies, providing in Th. B.2.3 the formal counterpart of Fact 5.2.1. As a side note, all of
the following results hold for the (infinite-trials) mixture objective ζ̃8 of Eq. (5.6).

We will consider the class of parametrized policies with parameters θi P Θi Ă Rd, with the Joint policy then
defined as πθ, θ P Θ “ ˆiPrN sΘi. Additionally, we will focus on the computational complexity only, by assuming
access to the exact gradient. The study of statistical complexity surpasses the scope of the current work. We define
the (independent) Policy Gradient Ascent (PGA) update as:

θk`1
i “ argmax

θiPΘi

ζ8pπθk q`

A

∇θiζ8pπθk q, θi´θki

E

´
1

2η
}θi´θki }

2
“ ΠΘi

␣

θki ` η∇θiζ8pπθk q
(

(B.7)

where ΠΘit¨u denotes Euclidean projection onto Θi, and equivalence holds by the convexity of Θi. The classes of
policies that allow for this condition to be true will be discussed shortly.
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In general the overall proof is built of three main steps, shared with the theory of Potential Markov Games [Leonar-
dos et al., 2022]: (i) prove the existence of well behaved stationary points; (ii) prove that performing independent
policy gradient is equivalent to perform Joint policy gradient; (iii) prove that the (joint) PGA update converges to
the stationary points via single-agent like analysis.

In order to derive the subsequent convergence proof, we will make the following assumptions:

Assumption B.2.1. Define the quantity λpθq :“ dπθ , then:
(i). λp¨q forms a bijection between Θ and λpΘq, where Θ and λpΘq are closed and convex.
(ii). The Jacobian matrix ∇θλpθq is Lipschitz continuous in Θ.
(iii). Denote gp¨q :“ λ´1

p¨q as the inverse mapping of λp¨q. Then there exists ℓθ ą 0 s.t. }gpλq´gpλ1
q| ď ℓθ}λ´λ1

}

for some norm } ¨ } and for all λ, λ1
P λpΘq.

Assumption B.2.2. There exists L ą 0 such that the gradient ∇θζ8pπθq is L-Lipschitz.

Assumption B.2.3. The agents have access to a gradient oracle Op¨q that returns ∇θiζ8pπθq for any deployed
Joint policy πθ .

On the Validity of Assumption B.2.1. This set of assumptions enforces the objective ζ8pπθq to be well-behaved
with respect to θ even if non-convex in general, and will allow for a rather strong result. Yet, the assumptions are
known to be true for directly parametrized policies over the whole support of the distribution dπ [Zhang et al.,
2020a], and as a result they implicitly require agents to employ policies conditioned over the full state-space S.
Fortunately enough, they also guarantee Θ to be convex.

Lemma B.2.1 ((i) Global optimality of stationary policies [Zhang et al., 2020a]). Suppose Assumption B.2.1 holds,
and F is a concave, and continuous function defined in an open neighborhood containing λpΘq. Let θ˚ be a
first-order stationary point of problem (5.1), i.e.,

Du˚
P B̂pF ˝ λqpθ˚

q, s.t. xu˚, θ ´ θ˚
y ď 0 for @θ P Θ. (B.8)

Then θ˚ is a globally optimal solution of problem (5.1).

This result characterizes the optimality of stationary points for Eq. (5.1). Furthermore, we know from Leonardos
et al. [2022] that stationary points of the objective are Nash Equilibria.

Lemma B.2.2 ((ii) Projection Operator [Leonardos et al., 2022]). Let θ :“ pθ1, ..., θN q be the parameter profile for
all agents and use the update of Eq. (B.7) over a non-disjoint infinite-trials objective. Then, it holds that

ΠΘ

␣

θk ` η∇θζ8pπθk q
(

“

´

ΠΘi

␣

θki ` η∇θiζ8pπθk q
(

¯

iPrN s

This result will only be used for the sake of the convergence analysis, since it allows to analyze independent
updates as Joint updates over a single objective. The following Theorem is the formal counterpart of Fact 5.2.1 and
it is a direct adaptation to the multi-agent case of the single-agent proof by Zhang et al. [2020a], by exploiting the
previous result.

Theorem B.2.3 ((iii) Convergence rate of independent PGA to stationary points (Formal Fact 5.2.1)). Let Assump-
tions B.2.1 and B.2.2 hold. Denote Dλ :“ maxλ,λ1PλpΘq }λ ´ λ1

} as defined in Assumption B.2.1(iii). Then the
independent policy gradient update (B.7) with η “ 1{L satisfies for all k with respect to a stationary (joint) policy
πθ˚ the following

ζ8pπθ˚ q´ζ8pπθk q ď
4Lℓ2θD

2
λ

k ` 1
.

Proof. First, the Lipschitz continuity in Assumption B.2.2 indicates that

ˇ

ˇ

ˇ
ζ8pλpθqq ´ ζ8pλpθkqq ´ x∇θζ8pλpθkqq, θ ´ θky

ˇ

ˇ

ˇ
ď

L

2
}θ ´ θk}

2.

Consequently, for any θ P Θ we have the ascent property:

ζ8pλpθqq ě ζ8pλpθkqq ` x∇θζ8pλpθkqq, θ ´ θky ´
L

2
}θ ´ θk}

2
ě ζ8pλpθqq ´ L}θ ´ θk}

2. (B.9)
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The optimality condition in the policy update rule (B.7) coupled with the result of Lemma B.2.2 allows us to follow
the same rationale as Zhang et al. [2020a]. We will report their proof structure after this step for completeness.

ζ8pλpθk`1
qq ě ζ8pλpθkqq ` x∇θζ8pλpθkqq, θk`1

´ θky ´
L

2
}θk`1

´ θk}
2

“ max
θPΘ

ζ8pλpθkqq ` x∇θζ8pλpθkqq, θ ´ θky ´
L

2
}θ ´ θk}

2

(a)
ě max

θPΘ
ζ8pλpθqq ´ L}θ ´ θk}

2

(b)
ě max

αPr0,1s

!

ζ8pλpθαqq ´ L}θα ´ θk}
2 : θα “ gpαλpθ˚

q ` p1 ´ αqλpθkqq

)

. (B.10)

where step (a) follows from (B.9) and step (b) uses the convexity of λpΘq. Then, by the concavity of ζ8 and the fact
that the composition λ ˝ g “ id due to Assumption B.2.1(i), we have that:

ζ8pλpθαqq “ ζ8pαλpθ˚
q ` p1 ´ αqλpθkqq ě αζ8pλpθ˚

qq ` p1 ´ αqζ8pλpθkqq.

Moreover, due to Assumption B.2.1(iii) we have that:

}θα ´ θk}
2

“ }gpαλpθ˚
q ` p1 ´ αqλpθkqq ´ gpλpθkqq}

2 (B.11)

ď α2ℓ2θ}λpθ˚
q ´ λpθkq}

2

ď α2ℓ2θD
2
λ.

From which we get

ζ8pλpθ˚
qq ´ ζ8pλpθk`1

qq

ď min
αPr0,1s

!

ζ8pλpθ˚
qq ´ ζ8pλpθαqq ` L}θα ´ θk}

2 : θα “ gpαλpθ˚
q ` p1 ´ αqλpθkqq

)

ď min
αPr0,1s

p1 ´ αq
`

ζ8pλpθ˚
qq ´ ζ8pλpθkqq

˘

` α2Lℓ2θD
2
λ . (B.12)

We define Λpπθq :“ λpθq, then αk “
ζ8pΛpπ˚qq´ζ8pΛpπkqq

2Lℓ2
θ
D2

λ
ě 0, which is the minimizer of the RHS of (B.12)

as long as it satisfies αk ď 1. Now, we claim the following: If αk ě 1 then αk`1 ă 1. Further, if αk ă 1 then
αk`1 ď αk. The two claims together mean that pαkqk is decreasing and all αk are in r0, 1q except perhaps α0.

To prove the first of the two claims, assume αk ě 1. This implies that ζ8pΛpπ˚
qq ´ ζ8pΛpπk

qq ě 2Lℓ2θD
2
λ.

Hence, choosing α “ 1 in (B.12), we get

ζ8pλpθ˚
qq ´ ζ8pλpθkqq ď Lℓ2θD

2
λ

which implies that αk`1 ď 1{2 ă 1. To prove the second claim, we plug αk into (B.12) to get

ζ8pλpθ˚
qq ´ ζ8pλpθk`1

qq ď

ˆ

1 ´
ζ8pλpθ˚

qq ´ ζ8pλpθkqq

4Lℓ2θD
2
λ

˙

pζ8pλpθ˚
qq ´ ζ8pλpθkqqq,

which shows that αk`1 ď αk as required.
Now, by our preceding discussion, for k “ 1, 2, . . . the previous recursion holds. Using the definition of αk,

we rewrite this in the equivalent form
αk`1

2
ď

´

1 ´
αk

2

¯

¨
αk

2
.

By rearranging the preceding expressions and algebraic manipulations, we obtain

2

αk`1
ě

1
`

1 ´
αk
2

˘

¨
αk
2

“
2

αk
`

1

1 ´
αk
2

ě
2

αk
` 1.

For simplicity assume that α0 ă 1 also holds. Then, 2
αk

ě 2
α0

` k, and consequenlty

ζ8pλpθ˚
qq ´ ζ8pλpθkqq ď

ζ8pλpθ˚
qq ´ ζ8pλpθ0qq

1 `
ζ8pλpθ˚qq´ζ8pλpθ0qq

4Lℓ2
θ
D2

λ
¨ k

ď
4Lℓ2θD

2
λ

k
.

A similar analysis holds when α0 ą 1. Combining these two gives that ζ8pλpπ˚
qq ´ ζ8pλpπk

qq ď
4Lℓ2θD

2
λ

k`1
no

matter the value of α0, which proves the result.
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Parallel MaxEnt in cPMDPs with Infinite-Trials.
In this section, we provide in Th. B.2.4 the formal counterpart of Fact 5.2.2, which states that by performing MaxEnt-
like updates in a parallel fashion in cPMDPs over infinite-trials objectives as reported in Algorithm B.2, it is possible
to obtain faster convergence rates with respect to the non-parallel formulation, through a convenient scaling factor
of 1{N with N being the number of parallel instantiations.

In order to allow for a simpler derivation, we will assume access to two kinds of oracles. First, some approxi-
mate planning oracles (one per each agent) that given a reward function (on states) r : S Ñ R and a sub-optimality
gap ϵ1, returns a policy π “ APPROXPLANpr, ϵ1q with the guarantee that Hpπq ě maxπ̄ Hpπ̄q ´ ϵ1.

In addition, some state distribution estimate oracles (one per each agent) that estimate the state distribution
d̂ “ DENSITYESTpπ, ϵ0q of any given (non-stationary) policy π, guaranteeing that }dπ ´ d̂}8 ď ϵ1.

Finally, we will assume that the entropy functional H is β-smooth, B-bounded, and that it satisfies the following
inequality for all X,Y :

}∇HpXq ´ ∇HpY q} ď β}X ´ Y }8

´βI ď ∇2HpXq ď βI; }∇HpXq}8 ď B

Under these assumptions, it follows that Algorithm B.2 enjoys the following:

Theorem B.2.4 (Convergence of Parallel MaxEnt). For any ε ą 0, set ε1 “ 0.1ε, ε0 “ 0.1β´1ε, and η “

0.1|S|
´1β´1Nε, where Algorithm B.2 is run for T iterations over N agents in parallel where:

T ě 10β|S|N´1ε´1 log 10Bε´1 ,

we have that:
Hpπmix,T q ě max

π
Hpdπq ´ ε .

Proof. Let π˚ be a maximum-entropy policy, ie. π˚
P argmaxπHpdπq.

Hpdπmix,t`1q “ Hpp1 ´ ηqdπmix,t ` ηdπt`1q

ěHpdπmix,tq ` ηxdπt`1 ´ dπmix,t ,∇Hpdπmix,tqy ´ η2β}dπt`1 ´ dπmix,t}
2
2

ěHpdπmix,tq `
η

N

ÿ

i

xdπi
t`1

´ dπmix,t ,∇Hpdπmix,tqy ´
η2β

N2

ÿ

i

}dπi
t`1

´ dπmix,t}
2
2

The second inequality follows from the smoothness of H , the third applies the definition of distributions induced
by mixture policies. Now, to incorporate the error due to the two oracles, observe that for each agent it holds

xdπi
t`1

,∇Hpdπmix,tqy ě xdπi
t`1

,∇Hpd̂iπmix,tqy ´ β}dπmix,t ´ d̂iπmix,t}8

ě xdπ˚ ,∇Hpd̂iπmix,tqy ´ βε0 ´ ε1

ě xdπ˚ ,∇Hpdπmix,tqy ´ 2βε0 ´ ε1

The first and last inequalities invoke the assumptions on the entropy functional. Note that the second inequality
above follows from the defining character of the planning oracle. Using the above fact and continuing on

Hpdπmix,t`1q ěHpdπmix,tq `
η

N

ÿ

i

xdπi
t`1

´ dπmix,t ,∇Hpdπmix,tqy ´
η2β

N2

ÿ

i

}dπi
t`1

´ dπmix,t}
2
2

ěHpdπmix,tq ` ηxdπ‹ ´ dπmix,t ,∇Hpdπmix,tqy ´ 2βηε0 ´ ηε1 ´
η2β

N
|S|

ěp1 ´ ηqHpdπmix,tq ` ηHpdπ˚ q ´ 2ηβε0 ´ ηε1 ´
η2β|S|

N

The last step here utilizes the concavity of H . It follows that

Hpdπ˚ q ´ Hpdπmix,t`1q ď p1 ´ ηqpHpdπ˚ q ´ Hpdπmix,tqq ` 2ηβε0 ` ηε1 `
η2β|S|

N
.

Telescoping the inequality, this simplifies to
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Hpdπ˚ q ´ Hpdπmix,T q ď p1 ´ ηq
T

pHpdπ˚ q ´ Hpdπmix,0qq ` 2βε0 ` ε1 ` ηβ

ď Be´Tη
` 2βε0 ` ε1 `

η2β|S|

N
.

Hpdπ˚ q ´ Hpdπmix,T q

ď p1 ´ ηq
T

pHpdπ˚ q ´ Hpdπmix,0qq ` 2βε0 ` ε1 `
ηβ|S|

N

ď Be´Tη
` 2βε0 ` ε1 `

ηβ|S|

N
.

Setting ε1 “ 0.1ε, ε0 “ 0.1β´1ε, η “ 0.1N |S|
´1β´1ε, T “ η´1 log 10Bε´1 leads to the final result.

Algorithm B.2: Parallel MaxEnt

Input: Step size η, number of iterations T , number of agents N , planning oracle tolerance ε1 ą 0,
distribution estimation oracle tolerance ε0 ą 0.
Set tCi

0 “ tπi
0uuiPN where πi

0 is an arbitrary policy, αi
0 “ 1.

for t “ 0, . . . , T ´ 1 do
Each agent call the state distribution oracle on πmix,t “ 1

N

ř

ipα
i
t, C

i
tq:

d̂iπmix,t “ DENSITYEST pπmix,t, ε0q

Define the reward function rit for each agent i as

ritpsq “ ∇Hpd̂iπmix,tq :“
dHpXq

dX

ˇ

ˇ

ˇ

ˇ

ˇ

X“d̂iπmix,t

.

Each agent computes the (approximately) optimal policy on rt:

πi
t`1 “ APPROXPLAN

´

rit, ε1
¯

.

Each agent updates

Ci
t`1 “ pπi

0, . . . , π
i
t, π

i
t`1q, (B.13)

αi
t`1 “ pp1 ´ ηqαi

t, ηq. (B.14)

end for
πmix,T “ 1

N

ř

ipα
i
T , C

i
T q.

The Use of Markovian and Non-Markovian Policies in cMGs with Finite-Trials.
The following result describes how in cMGs, as for convex MDPs, Non-Markovian policies are the right policy class
to employ to guarantee well-behaved results.

Lemma B.2.5 (Sufficiency of Disjoint Non-Markvoian Policies). For every Convex Markov Game M there exist
a Joint policy π‹

“ pπ‹,i
qiPN , with π‹,i

P ∆Ai

ST being a deterministic Non-Markovian policy, that is a Nash
Equilibrium for non-Disjoint single-trial objectives, for K “ 1.

Proof. The proof builds over a straight reduction. We build from the original MG M a temporally extended Markov
Game M̃ “ pN , S̃,A,P, r, µ, T q. A state s̃ is defined for each history that can be induced, i.e., s̃ P S̃ ðñ

s P ST . We keep the other objects equivalent, while we define the extended transition model by only looking
at the history’s last entry to compute the probability conditioned on the next history. We introduce a common
reward function across all the agents r : S̃ Ñ R such that rps̃q “ Hpdps̃qq for Joint objectives and rps̃q “

p1{Nq
ř

iPrN s
Hpdips̃iqq for mixture objectives, for any history of horizon T and 0 otherwise. We now know

that there is a deterministic Markovian policy such that π̃‹
“ pπ̃i

qiPN , π̃i
P ∆Ai

S̃ that is a Nash Equilibrium for
M̃ [Leonardos et al., 2022, Theorem 3.1]. Since s̃ corresponds to the set of histories of the original game, π̃‹ maps
to a non-Markovian policy in it. Finally, it is straightforward to notice that the NE of π̃‹ for M̃ implies the NE of
π̃‹ for the original CMG M.
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The previous result implicitly asks for policies conditioned over the Joint state space, as happened for infinite-
trials objectives as well. Interestingly, finite-trials objectives allow for a further characterization of how an optimal
Markovian policy would behave when conditioned on the per-agent states only:

Lemma B.2.6 (Behavior of Optimal Markovian Decentralized Policies). Let πNM “ pπi
NM P ∆Ai

ST qiPrN s an optimal

deterministic non-Markovian centralized policy and π̄M “ pπ̄i
M P ∆Ai

S qiPrN s the optimal Markovian centralized
policy, namely π̄M “ argmax

π“pπiP∆Ai
S qiPrN s

ζ1pπq. For a fixed sequence st P St ending in state s “ psi, s´iq,

the variance of the event of the optimal Markovian decentralized policy πM “ pπi
M P ∆Ai

Si
qiPrN s taking a˚

“

πNMp¨|stq “ π̄Mp¨|s, tq in si at step t is given by

Var
“

BpπMpa˚
|si, tqq

‰

“ Var
s‘s„p

πNM
t

“

E
“

BpπNMpa˚
|s ‘ sqq

‰‰

` Var
s‘p¨,s´iq„p

π̄M
t

“

E
“

Bpπ̄Mpa˚
|si, s´i, tqq

‰‰

.

where s ‘ s P St is a generic t-lenght sequence with s as last state, that is s ‘ s :“ pst´1 P St´1
q ‘ s, and Bpxq

is a Bernoulli with parameter x.

Unsurprisingly, this Lemma shows that whenever the optimal Non-Markovian strategy for requires to adapt its
decision in a Joint state s according to the history that led to it, an optimal Markovian policy for the same objective
must necessarily be a stochastic policy, additionally, whenever the optimal Markovian policy conditioned over per-
agent states only will need to be stochastic whenever the optimal Markovian strategy conditioned on the full states
randomizes its decision based on the Joint state s.

Proof. Let us consider the random variable Ai „ Pi denoting the event ”the agent i takes action a˚
i P Ai”. Through

the law of total variance [Bertsekas and Tsitsiklis, 2002], we can write the variance of A given s P S and t ě 0 as

Var
“

A|s, t
‰

“ E
“

A2
|s, t

‰

´ E
“

A|s, t
‰2

“ E
s

”

E
“

A2
|s, t, s

‰

ı

´ E
s

”

E
“

A|s, t, s
‰

ı2

“ E
s

”

Var
“

A|s, t, s
‰

` E
“

A|s, t, s
‰2
ı

´ E
s

”

E
π

“

A|s, t, s
‰

ı2

“ E
s

”

Var
“

A|s, t, s
‰

ı

` E
s

”

E
“

A|s, t, s
‰2
ı

´ E
s

”

E
“

A|s, t, s
‰

ı2

“ E
s

”

Var
“

A|s, t, s
‰

ı

` Var
s

”

E
“

A|s, t, s
‰

ı

. (B.15)

Now let the conditioning event s be distributed as s „ pπNM
t´1 , so that the condition s, t, s becomes s ‘ s where

s ‘ s “ ps0, a0, s1, . . . , st “ sq P St, and let the variable A be distributed according to P that maximizes the
objective given the conditioning. Hence, we have that A follows a Bernoulli distributions Bpπ̄Mpa˚

|s, tqq, and the
variable A on the right hand side of (B.16) is distributed as a Bernoulli BpπNMpa˚

|s ‘ sqq. Thus, we obtain

Var
“

Bpπ̄Mpa˚
|s, tqq

‰

“ E
s‘s„p

πNM
t

“

Var
“

BpπNMpa˚
|s ‘ sqq

‰‰

` Var
s‘s„p

πNM
t

“

E
“

BpπNMpa˚
|s ‘ sqq

‰‰

. (B.16)

We know from Lemma B.2.5 that the policy πNM is deterministic, so that Var
“

BpπNMpa˚
|s ‘ sqq

‰

“ 0 for every
s ‘ s. We then repeat the same steps in order to compare the two different Markovian policies:

Var
“

A|si, t
‰

“ E
s´i

”

Var
“

A|si, s´i, t
‰

ı

` Var
s´i

”

E
“

A|si, s´i, t
‰

ı

.

Repeating the same considerations as before we get that we can use (B.16) to get:

Var
“

BpπMpa˚
|si, tqq

‰

“ E
s‘p¨,s´iq„p

π̄M
t

“

Var
“

Bpπ̄Mpa˚
|si, s´i, tqq

‰‰

` Var
s‘p¨,s´iq„p

π̄M
t

“

E
“

Bpπ̄Mpa˚
|si, s´i, tqq

‰‰

“ Var
s‘s„p

πNM
t

“

E
“

BpπNMpa˚
|s ‘ sqq

‰‰

` Var
s‘p¨,s´iq„p

π̄M
t

“

E
“

Bpπ̄Mpa˚
|si, s´i, tqq

‰‰

.
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B.3 Proofs of Appendix A

Main Proof and Lemmas
In this section, we proceed to provide a proof of Theorem A.2.1, together with some useful lemmas instrumental for
proving it. Again, we define the set containing the solutions to the expected and sampled Max-Ent problems with
S :“ tη̄, η̂u, the related set for the multipliers ΩS :“ tλ̄, λ̂u, which is a restriction of Ω “ tλ P RM : Apλq ă

`8u, and a quantity that will be central now on hpx1, ¨ ¨ ¨ , xN q :“ maxηPS |Eηπ rlog ηs ´ 1
N

řN
i log ηpxiq|.

Contribution Highlights The whole structure of the proof is built upon several intermediate results, of which
some use standard techniques, and others are novel to this work. Here we report some comments to better clarify
our contributions:

• Lemma B.3.1 bounds the generalization-error with hp¨q, and it is based on the straighforward combination of
Lemma B.3.2 and Lemma B.3.3.

• Lemma B.3.2 introduces a slight modification to Wang et al. [2013] that is the use of the maxΩS over a finite
set rather than supΩ over the entire set of distributions. This will allow us to combine the result with the one
of Lemma B.3.3 and to deal with a simpler term, namely hpx1, ¨ ¨ ¨ , xN q defined over the max instead of the
sup.

• Lemma B.3.3 is a novel contribution, which was needed to obtain a practical form for the generalization error,
compared to the intermediate result of Wang et al. [2013]. In this lemma as well maxΩS is employed, rather
than supΩ.

• Lemma B.3.4 uses standard techniques as can be found in van der Vaart and Wellner [1996], Dudley [1999],
Koltchinskii and Panchenko [2002], but the analysis is again restricted to maxΩS thanks to the previous
results.

• Lemma B.3.5, Lemma B.3.6 are novel results. They are needed to derive a practical generalization-error
bound. Lemma B.3.5 upper-bounds }λ̄} with }λ̂} by requiring additional constraints about the expressiveness
of the feature functions. Lemma B.3.6 uses this result to substitute maxλPΩS }λ} with }λ̂}.

As previously said, one of the main positives of this derivation is the ability to operate over maxηPS rather than
supλPΩ. We will highlight the passages where this quantity is introduced with a p‹q, and provide further comments.

Initial step

First of all, we proceed in bounding the generalization error by bounding two sub-terms building it, that the following
Lemma B.3.1 will consist of a combination of two following lemmas, Lemma B.3.2 and Lemma B.3.3.

Lemma B.3.1. The generalization error between the true distribution and the Max-Ent solution of the sampled
problem ηπ, η̂ (expressed as KL-divergence between the two distributions), given N i.i.d. samples, can be bounded
with the following quantity:

DKLpηπ
||η̂q ď ´Hpηπ

q ` L̃pη̂q ` 5max
ηPS

|Eηπ rlog ηs ´
1

N

ÿ

jPrNs

log ηpxjq|

Proof. As said, the result directly follows by considering that for the problem under consideration DKLpηπ
||η̂q “

DKLpη̄||η̂q ` DKLpηπ
||η̄q, since the two solutions correspond to the exact and sampled estimation problems.

To bound the term on the right it is sufficient to bound the two terms on the left. We know that according to
Lemma B.3.2,

DKLpη̄||η̂q ď 2max
ηPS

|Eηπ rlog ηs ´
1

N

ÿ

jPrNs

log ηpxjq|

And according to Lemma B.3.3

DKLpηπ
||η̄q ď ´Hpηπ

q ` L̃pη̂q ` 3max
ηPS

|Eηπ rlog ηs ´
1

N

ÿ

jPrNs

log ηpxjq|

And the result directly follows.
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Lemma B.3.2. For the solutions of the exact and sampled Max-Ent problems, η̄ and η̂ respectively, it holds that

DKLpη̄||η̂q ď 2max
ηPS

|Eηπ rlog ηs ´
1

N

ÿ

jPrNs

log ηpxjq|

Proof.

DKLpη̄||η̂q “ DKLpηπ
||η̂q ´ DKLpηπ

||η̄q

“ pE
ηπ

rlog η̄s ´ Ẽ
η

rlog η̄sq ` pẼ
η

rlog η̂s ´ E
ηπ

rlog η̂sq ` pẼ
η

rlog η̄s ´ Ẽ
η

rlog η̂sq

ď 2 max
ηPS“tη̄,η̂u

|Eηπ rlog ηs ´
1

N

ÿ

jPrNs

log ηpxjq| `
1

N

ÿ

jPrNs

log
η̄pxjq

η̂pxjq
p‹q

ď 2max
ηPS

|Eηπ rlog ηs ´
1

N

ÿ

jPrNs

log ηpxjq|

where the term 1
N

ř

jPrNs
log

η̄pxjq

η̂pxjq
is negative and then is removed from the bounding scheme.

p‹q Here, Wang et al. [2013] bounded conservatively the first two terms pEηπ rlog η̄s´Eη̃rlog η̄sq`pEη̃rlog η̂s´

Eηπ rlog η̂sq with the supλPΩ, yet we notice that the only two quantities of interest between which we are asked to
maximize over are in the maxηPS“tη̄,η̂u.

Lemma B.3.3. For the solutions of the Max-Ent problem in expectation η̄ it is possible to bound the KL-divergence
with respect to the true distribution ηπ with the following quantity

DKLpηπ
||η̄q ď ´Hpηπ

q ` L̃pη̂q ` 3max
ηPS

|Eηπ rlog ηs ´
1

N

ÿ

jPrNs

log ηpxjq|

Proof.

|Lηπ pη̄q ´ L̃pη̂q| “ |Eηπ rlog η̄s ´
1

N

ÿ

jPrNs

log η̂pxjq|

ď |Eηπ rlog η̄s ´ Eηπ rlog η̂s| ` |Eηπ rlog η̂s ´
1

N

ÿ

jPrNs

log η̂pxjq|

ď |DKLpηπ
||η̄q ´ DKLpηπ

||η̂q| ` max
ηPS

|Eηπ rlog ηs ´
1

N

ÿ

jPrNs

log ηpxjq| p‹q

ď 2max
ηPS

|Eηπ rlog ηs ´
1

N

ÿ

jPrNs

log ηpxjq| ` max
ηPS

|Eηπ rlog ηs ´
1

N

ÿ

jPrNs

log ηpxjq|

ď 3max
ηPS

|Eηπ rlog ηs ´
1

N

ÿ

jPrNs

log ηpxjq|

p‹q Again, due to the conservative bound in Lemma B.3.2, Wang et al. [2013] maintained the same quantity in
this bound for later simplifications. We apply a tighter bound of maxηPS |Eηπ rlog ηs ´ 1

N

ř

jPrNs
log ηpxjq| to

|Eηπ rlog η̂s ´ 1
N

ř

jPrNs
log η̂pxjq|.

It follows that it is possible to write

|Lηπ pη̄q ´ L̃pη̂q| “ |DKLpηπ
||η̄q ` Hpηπ

q ´ L̃pη̂q|

|DKLpηπ
||η̄q ´ p´Hpηπ

q ` L̃pη̂qq| ď 3max
ηPS

|Eηπ rlog ηs ´
1

N

ÿ

jPrNs

log ηpxjq|

||DKLpηπ
||η̄q| ´ |p´Hpηπ

q ` L̃pη̂qq|| ď 3max
ηPS

|Eηπ rlog ηs ´
1

N

ÿ

jPrNs

log ηpxjq|

which proves the result.
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Intermediate Step

As suggested by the previous considerations, everything boils down to being able to bound the term hpx1, ¨ ¨ ¨ , xN q :“
maxηPS |Eηπ rlog ηs ´ 1

N

ř

jPrNs
log ηpxjq|. To do this, we used standard techniques to derive the following inter-

mediate step, where we can bound the quantity of interest which depends on the supremum between distributions
maxηPS | ¨ | with a quantity depending on the supremum between their respective parameters λ P ΩS , namely
supλPΩS

||λ||1.

Lemma B.3.4. The supremum difference between the expected log-likelihood and the sampled one, taken over
the expected and sampled solutions in S “ tλ̄, λ̂u, is defined as hpx1, ¨ ¨ ¨ , xN q – maxηPS |Eηπ rlog ηs ´
1
N

ř

jPrNs
log ηpxjq| and it can be bounded by

max
ηPS

|Eηπ rlog ηs ´
1

N

ÿ

jPrNs

log ηpxjq| ď 2 sup
λPΩS

||λ||1RN pΦq ` 2 sup
λPΩS

||λ||1F

c

log 1{δ

2N

with F “ supfPF ||f ||8.

Proof. We define

hpx1, . . . , xN q “ max
ηPS

|Eηπ rlog ηs ´
1

N

ÿ

jPrNs

log ηpxjq|

“ sup
λPΩS ,fPF

|Eηπ xλ, fpxqy ´
1

N

ÿ

jPrNs

xλ, fpxqy|

Then by exploiting the definition of the function, we study the differences induced by changing one sample from xk

to x1
k

|hpx1, . . . , xM q ´ hpx1, . . . , x
1
k, . . . , xM q| “

“ | sup
λPΩS ,fPF

|Eηπ xλ, fpxqy ´
1

N

ÿ

jPrNs

xλ, fpxqy|

´ sup
λPΩS ,fPF

|Eηπ xλ, fpxqy ´
1

N

ÿ

jPrNs‰k

xλ, fpxqy ` xλ, fpx1
kqy||

ď sup
λPΩS ,fPF

1

N
|xλ, fpxkq ´ fpx1

kqy|

ď
2

N
sup

λPΩS ,fPF
||λ||1||f ||8 “

C

N
pC “ 2 sup

λPΩS ,fPF
||λ||1||f ||8q

Now, by Mc Diarmid’s inequality, by studying the function concerning its sampled expectation EX̃ hp¨q over the
samples set X̃ “ tx1, . . . , xNu:

P phpx1, . . . , xN q ´ Ẽ
X
hpx1, . . . , x

1
k, . . . , xN q ě ϵq ď expp

´2Nϵ2

C2
q

P
´

hpx1, . . . , xN q ´ Ẽ
X
hpx1, . . . , x

1
k, . . . , xN q ě C

c

log 1{δ

2N

¯

ď δ

It then follows that

max
ηPS

|Eηπ rlog ηs ´
1

N

ÿ

jPrNs

log ηpxjq| ď Ẽ
X

sup
λPΩS ,fPF

|Eηπ xλ, fpxqy ´
1

N

ÿ

jPrNs

xλ, fpxqy| ` C

c

log 1{δ

2N

We now use symmetrization techniques by considering the Rademacher sequence tωju and by using the standard
result that given a class of measurable functions G if

ZpX̃ q “ sup
gPG

|E gpxq ´
1

N

ÿ

jPrNs

gpxjq| and RpX̃ , ωq “ sup
gPG

|
1

N

ÿ

jPrNs

ωjgpxjq|

Then:

Ẽ
X
ZpX̃ q ď 2 Ẽ

X ,ω
RpX̃ q
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From this, it follows that the whole expression reduces to

max
ηPS

|Eηπ rlog ηs ´
1

N

ÿ

jPrNs

log ηpxjq| ď 2 Ẽ
X ,ω

sup
λPΩS ,fPF

|
1

N

ÿ

jPrNs

ωjxλ, fpxjqy| ` C

c

log 1{δ

2N

We extract the supremum over λ P ΩS to obtain the (absolute) Rademacher averages of the functions in F

E
ω

sup
λPΩS ,fPF

|
1

N

ÿ

jPrNs

ωjxλ, fpxjqy| ď sup
λPΩS

||λ||1 E
ω
sup
fPF

|
1

N

ÿ

jPrNs

ωjfpxjq|

ď sup
λPΩS

||λ||1RN pΦq

It follows that the final formulation for the term we are studying is the following

max
ηPS

|Eηπ rlog ηs ´
1

N

ÿ

jPrNs

log ηpxjq| ď 2 sup
λPΩS

||λ||1RN pΦq ` C

c

log 1{δ

2N

C “ 2 sup
λPΩS ,fPF

||λ||1||f ||8

Final Step

The bound offered by Lemma B.3.4 would be unpractical since it relates a quantity central to our analysis to some-
thing which is not known in advance. Due to this, we make a further effort with the following Lemma, by substituting
the term supλPΩS

||λ||1 with ||λ̂||1. To do this, an additional assumption over the feature functions will be needed
though. First of all, we bound the two terms in ΩS with

Lemma B.3.5. The solutions of the expected and sampled Max-Ent problem are related to the bound:

||λ̄||1 ď ||λ̂||1 `

d

6M

σminp ˆCovpFqq
max
ηPS

|Eηπ rlog ηs ´
1

N

ÿ

jPrNs

log ηpxjq|

Proof. We take into account the following relationships which are valid for the solutions of the MaxEnt problem
under structural constraints, i.e. Eη̄rf s “ Eηπ rf s and Eη̂rf s “ Eη̃rf s

Hpηq “ log
ÿ

y

exppxλ, fpyqyq ´ xλ,E
η

rf sy

“ Apλq ´ xλ,E
η

rf sy “ Apλq ´ xλ,∇Apλqy

From which it follows that it is possible to recover the Bregman divergence under the log-partition function
DApλ1, λ2q

Hpη̄q ´ Hpη̂q “ Apλ̄q ´ Apλ̂q ´ xλ̄,∇Apλ̄qy ` xλ̂,∇Apη̂qy

“ Apλ̄q ´ Apλ̂q ´ xλ̄,∇Apλ̄qy ` xλ̂,∇Apλ̂qy ` xλ̄,∇Apλ̂qy ´ xλ̄,∇Apη̂qy

“ Apλ̄q ´ Apλ̂q ´ xλ̄ ´ λ̂,∇Apλ̂qy ` xλ̂,∇Apλ̂q ´ ∇Apλ̄qy

“ DApλ̄, λ̂q ` xλ̄,∇Apλ̂q ´ ∇Apλ̄qy

Now using the Taylor expansion of the divergence and the fact that ∇2Apλ̂q “ ˆCovpFq

Hpη̄q ´ Hpη̂q ` xλ̄,∇Apλ̄q ´ ∇Apλ̂qy “ DApλ̄, λ̂q

ě
1

2
pλ̄ ´ λ̂q

⊺∇2Apλ̂qpλ̄ ´ λ̂q “
1

2
||λ̄ ´ λ̂||

2
∇2Apλ̂q

ě σminp∇2Apλ̂qq||λ̄ ´ λ̂||
2
2

ě
σminp∇2Apλ̂qq

M
||λ̄ ´ λ̂||

2
1

ě
σminp ˆCovpFqq

M
||λ̄ ´ λ̂||

2
1
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where M corresponds to the number of the features. Finally, by exploiting the zero duality gap and the results of
Lemma B.3.8

||λ̄ ´ λ̂||
2
1 ď

M

σminpCovλ̂pfqq
pHpη̄q ´ Hpη̂q ` xλ̄,∇Apλ̄q ´ ∇Apλ̂qyq

“
M

σminp ˆCovpFqq
pL0pλ̄q ´ L̃pλ̂q ` xλ̄,∇Apλ̄q ´ ∇Apλ̂qyq

ď
M

σminp ˆCovpFqq
p|L0pλ̄q ´ L̃pλ̂q| ` |xλ̄,∇Apλ̄q ´ ∇Apλ̂qy|q

ď
2M

σminp ˆCovpFqq
|L0pλ̄q ´ L̃pλ̂q|

ď
6M

σminp ˆCovpFqq
max
ηPS

|Eηπ rlog ηs ´
1

N

ÿ

jPrNs

log ηpxjq|

It is then possible to write

||λ̄ ´ λ̂||1 ď

d

6M

σminp ˆCovpFqq
max
ηPS

|Eηπ rlog ηs ´
1

N

ÿ

jPrNs

log ηpxjq|

|||λ̄||1 ´ ||λ̂||1| ď ||λ̄ ´ λ̂||1 ď

d

6M

σminp ˆCovpFqq
max
ηPS

|Eηπ rlog ηs ´
1

N

ÿ

jPrNs

log ηpxjq|

which concludes the proof.

Now, it is possible to combine all the previous results in

Lemma B.3.6. Assume that the minimum singular value of the sampled covariance matrix is strictly positive, that
is σminp ˆCovpFqq ą 0, then the supremum term of Lemma B.3.4 can be bounded with

max
ηPS

|Eηπ rlog ηs ´
1

N

ÿ

jPrNs

log ηpxjq| À 2||λ̂||1RN pΦq ` 2||λ̂||1F

c

log 1{δ

2N

Proof. Taking all together the terms obtained so far from Lemmas [B.3.4, B.3.5], setting C “ 2 supλPtλ̄,λ̂u,fPF ||λ||1||f ||8

we have

max
ηPS

|Eηπ rlog ηs ´
1

N

ÿ

jPrNs

log ηpxjq| ď 2 sup
λPtλ̄,λ̂u

||λ||1RN pΦq ` C

c

log 1{δ

2N

sup
λPtλ̄,λ̂u

||λ||1 ď ||λ̂||1 `

d

6M

σminp ˆCovpFqq
max
ηPS

|Eηπ rlog ηs ´
1

N

ÿ

jPrNs

log ηpxjq|

It follows the quadratic form in x “

b

maxηPS |Eηπ rlog ηs ´ 1
N

ř

jPrNs
log ηpxjq|

x2
´ bx ´ c ď 0

b “ 2

d

6M

σminp ˆCovpFqq

«

RN pΦq ` F

c

log 1{δ

2N

ff

ě 0

c “ 2||λ̂||1

«

RN pΦq ` F

c

log 1{δ

2N

ff

ě 0

The discriminant is well defined ∆ “ b2 ` 4c ě 0 and the solution is given by

max
ηPS

|Eηπ rlog ηs ´
1

N

ÿ

jPrNs

log ηpxjq| ď

´ b `
?
b2 ` 4c

2

¯2

ď
b2

2
` c ` b

?
b2 ` 4c

À 2||λ̂||1RN pΦq ` 2||λ̂||1F

c

log 1{δ

2N

The final step was done because all additional terms out of c itself are of higher order.
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Further instrumental Lemmas
In this section, we present some additional standard lemmas which summarize some important properties of the
Max-Ent solutions and distributions in the exponential family that was used in the employed section.

Lemma B.3.7. For any distribution η in the exponential family, it holds that for the log-likelihood with respect to a
distribution ηπ it holds that

Lηπ pλq “ Apλq ´ xλ, E
ηπ

rf sy

Proof.

Lηπ pλq “ ´ E
ηπ

rlog ηs “ ´ E
ηπ

rxλ, fy ´ log Φλs “ ´xλ, E
ηπ

rf sy ` Apλq

Lemma B.3.8. For any distribution η in the exponential family, it holds that

|Lηπ pλq ´ L̃pλq| “ |xλ, E
ηπ

rf s ´ Ẽrf sy|

where Lηπ pλq is the negative log-likelihood of η with respect to ηπ .

Proof.

|Lηπ pλq ´ L̃pλq| “ | ´ xλ, E
ηπ

rf sy ` Apλq ` xλ, Ẽ
η

rf sy ´ Apλq|

“ |xλ,´ E
ηπ

rf s ` Ẽ
η

rf sy|

“ |xλ, E
ηπ

rf s ´ Ẽ
η

rf sy|

We will now derive some properties between the sampled log-likelihood and the log-likelihood with respect to
the true distribution ηπ , called L0 for simplicity

Lemma B.3.9. For the solutions of the exact and sampled Max-Ent problems, η̄ and η̂ respectively, it holds that

|L0pλ̄q ´ L̃pλ̂q| ď |xλ̂, E
ηπ

rf s ´ Ẽ
η

rf sy|

ď |xλ̂,∇Apλ̄q ´ ∇Apλ̂qy|

|L0pλ̄q ´ L̃pη̂q| ě |xλ̄, E
ηπ

rf s ´ Ẽ
η

rf sy|

ě |xλ̄,∇Apλ̄q ´ ∇Apλ̂qy|

Proof. The proof follows directly from the fact that λ̄ is optimal with respect to η̂ in the exact problem L0pλ̄q ď

L0pλ̂q and viceversa L̃pλ̄q ě L̃pη̂q.

Monotonicity Lemma
In this section, we provide the proof of Lemma A.3.2.
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Proof. Taking into account two features with increased factorization F Ă F 1 we consider the particular set of
factorized features ᾱ, tᾱku, since the rest of the features are the same. It follows that

|µ̂ᾱ| “
ÿ

k

|µ̂ᾱk |

|µ̂ᾱ|

|Sᾱ|
“

ÿ

k

|µ̂ᾱk |

|Sᾱ|
p@ᾱk : |Sᾱk | ă |Sᾱ|q

|µ̂ᾱ|

|Sᾱ|
ď

ÿ

k

|µ̂ᾱk |

|Sᾱk |

Now, due to the relationship of Lemma B.3.10 we know that λ̂α “ fp
|µ̂ᾱ|

|Sᾱ|
q with fp¨q being an unknown but

subadditive for positive values of λ. Moreover, the functions are the same for all the terms, so that

|µ̂ᾱ|

|Sᾱ|
ď

ÿ

k

|µ̂ᾱk |

|Sᾱk |

fp
|µ̂ᾱ|

|Sᾱ|
q ď fp

ÿ

k

|µ̂ᾱk |

|Sᾱk |
q ď

ÿ

k

fp
|µ̂ᾱk |

|Sᾱk |
q

|λᾱ| ď
ÿ

k

|λᾱk |

Since the rest of the terms are the same, this concludes the proof.

Lemma B.3.10. There exists a monotonic and anti-symmetric function fp¨q such that it is possible to univocally
define λ̂α “ fpµ̂α, |Sα|, Gmaxq

Proof. We start by considering the Lagrangian formulation of the Max-Ent problem,

Lpη, λq “ Hpηq `
ÿ

αPIF

λαpEηrfαs ´ µ̂αq ` µpErηs ´ 1q (B.17)

By taking the gradient of the Lagrangian with respect to the distribution it follows that each x-term of the support
gives

p∇ηLqpxq “ ´1 ´ log ηpxq ` λαfα ` µ

From which it follows that with λ0 “ µ ´ 1 the equation for the α-constraint is

ηαpxq “ eλ0eλαfαpxq

We now compute insert this value inside the constraint equation under the feature class fα “ g1sPSα

ż

R

ż

X
gηpxqα “ µ̂α

|Sα|

ż Gmax

Gmin

geλ0eλαrdg “ µ̂α

which leads to the implicit formulation for λα by solving the integral by setting G “ Gmax

eλ0
2λα coshpGλαq ´ 2 sinhpGλαqq

λ2
α

“
µ̂α

|Sα|

Now, it can be proven by considering the normalization constraint that eλ0 “ 1{Zpλq with Zpλq a constant depend-
ing on λα, in particular:

Zpλq “

ż

X
e
ř

α λαfαdx

“
ÿ

α

|Sα|

ż

R
eλαfαdr

“
ÿ

α

|Sα|
sinhλαG

λα

“ |Sα|
sinhλαG

λα
` C
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The whole equation then becomes

2λα coshpGλαq ´ 2 sinhpGλαq

λ2
α

“ µ̂αp
sinhλαG

λα
` Cq

This equation provides an implicit definition for λα and it can be shown to be convex for positive values of λ.
The function for lambda is the inverse of this whole term, which is then concave and has a zero in the origin, thus it
is sub-additive.
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APPENDIXC
Experimental Details

C.1 Experimental Details of Section 4.1

In the following Section, we report additional details on the experiments of Section 4.2.4. Specifically, we describe
the employed domains and their properties, we comment on the choice of hyper-parameters, and on the effect of the
regularization on the results of PG for Reg-MOE.

Environments

Most of the reported experiments refer to the gridworld reported on the left,
which is composed of a set of rooms connected by narrow corridors. The grid
is composed of 44 cells, which define both the set of states (|S| “ 44) and
observations (|O| “ 44). The set of actions A include an action to move to
the adjacent cell in every direction (|A| “ 4). To every action is associated a
probability of failure p̄ “ 0.1 that leads the agent to an adjacent cell (at ran-
dom) different from the one intended by the taken action. The episode horizon
is T “ 55 and the initial state distribution µ was set to be a deterministic over
the top-left cell. The glasses icon in the bottom left cell of the grid represents
a state that “flips” the behavior of the observations. This is only relevant in the
experiment in Figure 5.3 and is better explained below. All the experiments of
Section 4.2.4 were performed with a regularization factor β “ 0.8 (for PG for
Reg-MOE) and a learning rate of α “ 0.9. Finally, the batch size was N “ 6
and the number of independent runs was set to 16.

Observations. The observations were set to be Gaussian distributions
Gp0, σ2

q over the Manhattan distance centered in the true state and without
caring about any obstacles, with 0 mean and different values of variance σ2.
The resulting observation matrices are reported in Figures. Finally, the effect of “wearing” the glasses (i.e., reaching
the bottom-left cell of the grid) is to make the observation function fully deterministic. Note that the information
on whether the agent wears the glasses is encoded in the state themselves, doubling the size of the set of states to
|S| “ 88.
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Figure C.1: Exp. of Fig. 4.4 Figure C.2: Exp. of Fig. 4.5 Figure C.3: Exp. of Fig. 4.6

Heatmaps of O in the experiments of Section 4.2.4.Figure C.3 has logarithmic scale.

Hyper-Parameters
In this section, we briefly discuss the choice behind the selection of specific hyper-parameters employed in the
experiments.

Learning Rate. As for the learning rate α, a value of α “ 0.9 was selected across the experiments. As one
can see from the Figures, the best performance were reached with a learning rate between α “ 1 and α “ 0.7, so
α “ 0.9 can be seen as a robust choice across the boards.

Figure C.4: Exp. of Fig. 4.4 Figure C.5: Exp. of Fig. 4.5 Figure C.6: Exp. of Fig. 4.6

Comparison of the performance with different values of the learning rate for various algorithms and
domains.

Regularization. As for the regularization term β, the best performance for the various instances was generally
reached with β P p0.3, 1q (the learning rate is fixed to α “ 0.9). For lower values of β, the effect of the regularization
is almost negligible, while for higher values of β the agent tended to over-optimize the regularization term in place
of the entropy over observations, reducing performance. As one would expect, the best value for the regularization
depend on the specific POMDP instance.

Figure C.7: σ2 “ 10 Figure C.8: σ2 “ 1 Figure C.9: σ2 “ 0.25

A comparison of different values of regularization for varying emission matrices’ quality and settings
with and without glasses. For the low value of regularization, the performances of Reg-MOE are

equivalent to the MOE performances.
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C.2 Experimental Details of Section 4.2

Environments
Here we report a visualization of the four types of domain taken into account.

Figure C.10: Single
Room

Figure C.11: Four
Rooms

Figure C.12: Four
Rooms with 4
Observations

Figure C.13: Four
Rooms with 2
Observations

Hyperparameters
The learning rate was selected as α “ 0.3. The batch size was selected to be N “ 10 after tuning. As for the
time horizon, T “ S in all the experiments. This makes the exploration task more challenging as every state can
be visited at most once. The best regularization term ρ was found to be approximately equal to 0.02.

Policy Class
As already described, a plethora of deployable policy classes are possible for addressing MSE in POMDPs. In the
main paper, we focused on belief-averaged policies. First, we show how this policy class is superior (or non-worse)
to other possible options, being implicitly non-Markovian over observations while being memory efficient. Then,
we show that belief-averaged policies perform better than (direct-parametrization) Markovian policies over belief
states, even in the case when the belief states set is manageable in size.
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Figure C.14: Env. (a),
deterministic, 0.1

Figure C.15: Env. (a),
deterministic, 10

Figure C.16: Env. (b),
deterministic, 10

Figure C.17: Env. (c),
deterministic, n.a.

Figure C.18: Env. (a),
stochastic, 10

Figure C.19: Env. (d),
deterministic, n.a.

True state entropy obtained by Algorithm 1 specialized for the feedbacks MSE, MOE, MBE, MBE with
belief regularization (Reg-MBE) over different policy classes with direct parametrization:

Markovian over observation (O), Belief Averaged (BA), Markovian over hallucinated states (S). For
each plot, we report a tuple (environment, transition noise, observation variance) where the latter is
not available (n.a.) when observations are deterministic. For each curve, we report the average and
95% c.i. over 16 runs. BA confirms to be the policy class with generally higher performance in all

the considered instances.

Figure C.20: Env. (a) p|S| “ 9q,
deterministic, 0.2

Figure C.21: Env. (a) p|S| “ 16q,
deterministic, 0.2

True state entropy obtained by Algorithm 1 with MSE and MBE employing belief averaged policies
(BA) and Markovian policies over belief states (B). For each plot, we report a tuple (environment,

transition noise, observation variance) where the latter is not available (n.a.) when observations are
deterministic. For each curve, we report the average and 95% c.i. over 16 runs. Limited size

instances were reported since |B| “ 104 in C.20 and |B| “ 105 in C.21 leading to memory issues in
the policies storage. Even in these cases, BA shows higher performances.
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C.3 Experimental Details of Section 5.4

Environments
The main empirical proof of concept was based on two environments. First, Env. (i), the so called secret room
environment by Liu et al. [2021]. In this environment, two agents operate within two rooms of a 10 ˆ 10 discrete
grid. There is one switch in each room, one in position p1, 9q (corner of first room), another in position p9, 1q

(corner of second room). The rooms are separated by a door and agents start in the same room deterministically
at positions p1, 1q and p2, 2q respectively. The door will open only when one of the switches is occupied, which
means that the (Manhattan) distance between one of the agents and the switch is less than 1.5. The full state vector
contains x, y locations of the two agents and binary variables to indicate if doors are open but per-agent policies are
conditioned on their respective states only and the state of the door. For Sparse-Rewards Tasks, the goal was set to
be deterministically at the worst case, namely p9, 9q and to provide a positive reward to both the agents of 100 when
reached, which means again that the (Manhattan) distance between one of the agents and the switch is less than 1.5,
a reward of 0 otherwise. The second environment, Env. (ii), was the MaMuJoCo reacher environment Peng et al.
[2021]. In this environment, two agents operate the two linked joints and each space dimension is discretized over
10 bins. Per-agent policies were conditioned on their respective joint angles only. For Sparse-Rewards Tasks, the
goal was set to be randomly at the worst case, namely on position p˘0.21,˘0.21q on the boundary of the reachable
area. Reaching the goal mean to have a tip position (not observable by the agents and not discretized) at a distance
less that 0.05 and provides a positive reward to both the agents of 1 when reached, a reward of 0 otherwise.

Hyperparameters
Policies. In Environment (i), the policy was defined by a dense p64, 64q NN. This network accepts per-agent
state features as input and produces action vector probabilities through a final soft-max layer. In Environment (ii)
instead, the policy is represented by a Gaussian characterized by a diagonal covariance matrix. It receives features
of the state as input and outputs action vectors. The mean is conditioned on the state and is the terminal output
of a dense p64, 64q NN. The standard deviation is unconditioned, represented by a distinct trainable vector, and is
initialised to ´0.5. The weights are initialised using Xavier Initialization.

TRPE. A dataset of N trajectories is collected in each epoch over a T -lenght horizon (see Algorithm 5.3),
leading to the reported number of samples. Throughout the experiment the number of epochs e were set equal to
e “ 100, the number of trajectories N “ 10, the KL threshold δ “ 6, the maximum number of off-policy iterations
set to noff,iter “ 20, the learning rate was set to η “ 10´5 and the number of seeds set equal to 4 due to the inherent
low stochasticity of the environment.

Multi-Agent TRPO. We adopted the notation from Duan et al. [2016]. Agents have independent critics
p64, 64q Dense networks and in each epoch a dataset of N trajectories is gathered for a given exploration horizon T
for each agent, leading to the reported number of samples. Throughout the experiment the number of epochs e were
set equal to e “ 100, the number of trajectories building the batch size N “ 20, the KL threshold δ “ 10´4, the
maximum number of off-policy iterations set to noff,iter “ 20, the discount was set to γ “ 0.99.
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Appendix C. Experimental Details

Mixture Joint Disjoint Random Initialization
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Figure C.22: Entropy of
Agent 1 Policy in

TRPE Training (i),
T “ 50).
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Figure C.23: Entropy of

Agent 2 Policy in
TRPE Training (i),

T “ 50).
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Figure C.24: Entropy of
Agent 1 Policy in

TRPE Training (ii),
T “ 100).
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Figure C.25: Entropy of
Agent 2 Policy in

TRPE Training (ii),
T “ 100).

Policiy Entropy Insights for TRPO Pretraining in Env (i) and Env (ii). Lower Entropic Policies with
Disjoint Objectives might justify the difference in pre-training performance even if the

performances in training are similar.

Full Experimentation
We complement the main findings with two additional sets of figures that offer deeper insight into the mechanisms
underlying the effectiveness of different exploration objectives.

Correlation Between Objective Type and Policy Entropy. The first set of figures demonstrates that the
performance differences observed across joint, disjoint, and mixture objectives are tightly coupled with their ability
to foster deterministic versus stochastic behaviors. Specifically, we observe that disjoint objectives often result in
collapsed, nearly deterministic policies that fail to support effective coordinated exploration. In contrast, mixture
objectives promote more diverse and stochastic behaviors across agents, enabling coverage of wider regions of the
state space and better alignment with the theoretical goals of entropy maximization.

Extended Pre-Training Results Across Exploration Horizon Regimes. The second group of figures
reports the full pre-training performance curves across different efficiency regimes of exploration horizons. These
include both short-horizon (e.g., T “ 50) and long-horizon (e.g., T “ 150) setups, highlighting how mixture
objectives consistently lead to better downstream fine-tuning or zero-shot performance. Additionally, we include
pre-training plots for the high-dimensional MaMuJoCo Reacher environment. Even in this more complex setting,
mixture-pretrained policies exhibit faster adaptation and higher entropic policies compared to other methods, sup-
porting the robustness of our approach.

These additional visualizations further validate the theoretical claims and emphasize the practical relevance of
mixture-based exploration in multi-agent task-agnostic settings.
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C.3. Experimental Details of Section 5.4
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Figure C.26: TRPE
Joint Entropy

(Env. (i), T “ 50).
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Figure C.27: TRPE
Mixture Entropy

(Env. (i), T “ 50).
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Figure C.28: TRPE
Entropy Agent 1

(Env. (i), T “ 50).
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Figure C.29: TRPE
Entropy Agent 2

(Env. (i), T “ 50).
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Figure C.30: TRPE
Joint Entropy

(Env. (i), T “ 100).
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Figure C.31: TRPE
Mixture Entropy

(Env. (i), T “ 100).
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Figure C.32: TRPE
Entropy Agent 1

(Env. (i), T “ 100).
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Figure C.33: TRPE
Entropy Agent 2

(Env. (i), T “ 100).
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Figure C.34: TRPE
Joint Entropy

(Env. (i), T “ 150).
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Figure C.35: TRPE
Mixture Entropy

(Env. (i), T “ 150).
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Figure C.36: TRPE
Entropy Agent 1

(Env. (i), T “ 150).
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Figure C.37: TRPE
Entropy Agent 2

(Env. (i), T “ 150).
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Figure C.38: TRPE
Joint Entropy

(Env. (ii), T “ 100).
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Figure C.39: TRPE
Mixture Entropy

(Env. (ii), T “ 100).

0.0 0.2 0.4 0.6 0.8 1.0
Samples ×106

3.0

3.1

3.2

en
tro

py
 A

1

Figure C.40: TRPE
Entropy Agent 1

(Env. (ii), T “ 100).

0.0 0.2 0.4 0.6 0.8 1.0
Samples ×106

2.00

2.25

2.50

2.75

3.00

en
tro

py
 A

2

Figure C.41: TRPE
Entropy Agent 2

(Env. (ii), T “ 100).

Full Visualization of Policy Pre-Training.
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